Mpeg 1 2 какой выбрать. MPEG2 и MPEG4 - описание форматов. Допустимые комбинации Профилей и Уровней

Нонейм клавиатура - обзор и разборка

На этот раз мне попалась безымянная, или нонейм клавиатура - ни производитель, ни название модели неизвестны... Тем не менее эта USB клавиатура хорошо сделана, сравнительно. Достаточно удобная. С рядом дополнительных клавиш, из-за чего такие "клавы" продавцы любят называть мультимедийными.

+ Щелкайте по фото, чтобы увеличить!

Размер клавиатуры стандартный, но за счет дополнительных клавиш сверху есть дополнительный выступ. Корпус из черной пластмассы, сверху серебристая накладка. Клавиши черные. На них только латинские буквы, поэтому на них были наклеены специальные квадратики с латинскими и русскими буквами. Сверху ряд из дополнительных 17 кнопок - они сделаны под хром. Над ними нанесены иконки, означающие их функции. Пластмасса, из которой сделана клавиатура, в целом неплохая, но хрупкая - правый нижний угол откололся... правда клавиатуру уронили с полутораметровой высоты.

На нижней стороне две резиновые и две откидные ножки. По центру круглая наклейка с датой изготовления - ноябрь 2004 года.

Бумажная этикетка. Здесь только логотипы FCC и CE, требования по питанию и - сделано в Китае...

Кабель хороший, длинный, на конце стандартный USB разъем.

Разбираем клавиатуру. Выкручиваем все винты с нижней части. Два винта спрятаны под резиновыми ножками...

Внутри - матрица кнопок, плата электроники... на матрице кнопок нанесены такие маркировки: XJX-CG-K381 ver:b и CG-2015/KR EM83053H.

Каждая клавиша снабжена своим собственным кружком - конической резиновой давилкой...

Плата электроники - здесь мы видим: три зеленых светодиода индикации, керамический резонатор ZS-OM, два резистора и три конденсатора - один электролитический и два керамических дисковых. Четыре провода из интерфейсного кабеля впаяны в плату.

На обратной стороне платы бескорпусная микросхема залитая компаундом. Тут маркировки: CG-USBHT-F и HT82K629A... последнее - микросхема, шифратор клавиатур.

На этом заканчиваю. Клавиатура, в общем и целом нормальная, из бюджетного сектора. По некоторым данным это может быть разновидность клавиатуры Arctic K381... но неизвестно.

Михаил Дмитриенко, 2019 г.

Вступление

Прародитель этого формата - MPEG-1, о котором шла речь в предыдущей главе , не колеблясь можно назвать поистине революционным, ведь до него ничего подобного не существовало. Первые видеодиски и спутниковые телепередачи в формате MPEG-1 казались чудом - такое качество при таком относительно низком битрейте. Сжатое цифровое видео имело качество сопоставимое с качеством бытового видеомагнитофона и имело по сравнению с аналоговыми носителями массу преимуществ. Но время шло, прогресс в области цифровых технологий шагал семимильными шагами, и вот старичку MPEG-1 понадобилась существенная доработка, чтобы угнаться за чудесами науки и техники. В результате возник формат MPEG-2, который является не революционным, а скорее, эволюционным форматом, возникнув в результате переделки MPEG-1 под нужды заказчиков. А заказчиками данного формата являлись крупнейшие массмедиа-компании, которые сделали ставку на спутниковое телевидение и нелинейный цифровой видеомонтаж.

Это сейчас формат MPEG-2 ассоциируется в первую очередь с DVD-дисками, а в 1992 году, когда стартовали работы по созданию этого формата, не существовало широко доступных носителей, на которые можно было бы записать видеоинформацию сжатую MPEG-2, но самое главное, компьютерная техника того времени не могла обеспечить нужную полосу пропускания - от 2 до 9 Мбит в секунду. Зато данный канал могло обеспечить спутниковое телевидение с новейшим по тем временам оборудованием. Такие высокие требования к каналу вовсе не означали, что степень сжатия MPEG-2 ниже, чем у MPEG-1, наоборот, значительно выше! А вот разрешение изображения и количество кадров в секунду значительно больше, так как именно высокое качество при разумном битрейте и было той основной целью, которую поставили перед комитетом MPEG заказчики. Именно благодаря MPEG-2 и стало возможно появление телевидения высокого разрешения - HDTV, в котором изображение намного четче, чем у обычного телевидения.

Спустя несколько лет после начала работ, в октябре 1995 года через космический телевизионный спутник "Pan Am Sat" было осуществлено первое 20-канальное ТВ-вещание использующее стандарт MPEG-2. Спутник осуществлял и до сих пор осуществляет трансляцию на территории Скандинавии, Бельгии, Нидерландов, Люксембурга, Ближнего Востока и Африки.
В настоящее время идет широкая экспансия HDTV на Дальнем Востоке - в Японии и Китае.
Видеопотоки сжатые MPEG-2 с битрейтом 9 Мбит в секунду используются при студийной записи и в высококачественном цифровом видеомонтаже.

С появлением первых DVD-проигрывателей, обладающих колоссальной емкостью и относительно доступной ценой, MPEG-2, что вполне естественно был выбран в качестве основного формата компрессии видеоданных за его высокое качество и высокую степень сжатия. Именно фильмы, использующие MPEG-2, до сих пор являются главнейшим аргументом в пользу DVD.

Закончим с ретроспективным обзором MPEG-2 и попытаемся покопаться в его внутренностях. Как уже говорилось, MPEG-2 формат эволюционный, именно поэтому уместно его рассматривать, сравнивая с его именитым прародителем MPEG-1, с указанием, что же нового было внесено в исходный формат.

MPEG-2. Что нового?

Надо сказать, разработчики MPEG-2 подошли к решению поставленной проблемы творчески. Мозговой штурм, развязанный по поводу изыскания возможности удаления лишних битов и байтов из и без того уже сжатого изображения (вспомните, уже существовал MPEG-1, теперь нужно было ужать его) был начат сразу с трех сторон. Помимо улучшения алгоритмов компрессии видео (одна сторона) и аудио (другая) был найден альтернативный путь уменьшения размера конечного файла прежде ранее не использовавшийся.

Как стало известно из исследований комитета MPEG, свыше 95% видеоданных, так или иначе, повторяются в разных кадрах, причем неоднократно. Эти данные являются балластными или, если использовать термин, предложенный комитетом MPEG, избыточными. Избыточные данные удаляются практически без ущерба для изображения, на место повторяющиеся участков при воспроизведении подставляется один единственный оригинальный фрагмент. К уже известным алгоритмам сжатия и удаления избыточной информации, которые встречались нам в формате MPEG-1, добавился еще один, по-видимому, наиболее эффективный. После разбивки видеопотока на фреймы, данный алгоритм анализирует содержимое очередного фрейма на предмет повторяющихся, избыточных данных. Составляется список оригинальных участков и таблица участков повторяющихся. Оригиналы сохраняются, копии удаляются, а таблица повторяющихся участков используется при декодировании сжатого видеопотока. Результатом работы алгоритма удаления избыточной информации является превосходное высокочеткое изображение при низком битрейте. Подобное соотношение размер/качество до появления MPEG-2 считалось недостижимым.

Но и у этого алгоритма есть ограничения. Например, повторяющиеся фрагменты должны быть достаточно крупными, иначе пришлось бы заводить запись в таблице повторяющихся участков чуть ли не на каждый пиксел, что свело бы пользу от таблицы к нулю, так как ее размер превышал бы размер фрейма. И еще оно обстоятельство делает этот алгоритм менее эффективным - наиболее полезным и эффективным было бы применение этого алгоритма не к отдельным фреймам, а ко всему видеоролику в целом, так как вероятность нахождения повторяющихся участков в большом видеоучастке намного выше, чем в отдельно взятом фрейме. Да и суммарный размер таблиц для всех фреймов намного больше, чем возможный размер одной общей таблицы. Но, к сожалению, MPEG-2 - это потоковый формат, который изначально предназначался для пересылки по спутниковым каналам или по кабельным сетям, поэтому наличие фреймов обязательное условие.

Итак, мы рассмотрели один из подходов, который обеспечил существенное уменьшение размера кодируемого файла, но если бы этот трюк был один, то разработчики никогда не добились бы столь впечатляющих результатов, которые мы увидели в MPEG-2. Разумеется, им пришлось хорошенько попотеть над уже существующими алгоритмами, буквально вылизав их и выжав все до последнего байта. Очень существенной модернизации подверглись алгоритмы сжатия видео.

Изменения в алгоритмах сжатия видеоданных по сравнению с MPEG-1.

Основные изменения коснулись алгоритмов квантования, то есть алгоритмов преобразования непрерывных данных в дискретные. В MPEG-2 используется нелинейный процесс дискретно-косинусного преобразования, который гораздо эффективнее предшественника. Формат MPEG-2 предоставляет пользователям и программистам значительно большую свободу по сравнению с MPEG-1. Так теперь стало возможным в процессе кодирования задавать точность частотных коэффициентов матрицы квантования, что непосредственно влияет на качество получаемого в результате сжатия изображения (и на размер тоже). Используя MPEG-2, пользователь может задавать следующие значения точности квантования - 8, 9, 10 и 11 бит на одно значение элемента, что делает этот формат значительно более гибким по сравнению с MPEG-1, в котором было только одно фиксированное значение - 8 бит на элемент.

Также стало возможным загрузить отдельную матрицу квантования (quantization matrix) непосредственно перед каждым кадром, что позволяет добиться очень высокого качество изображения, хоть это и довольно трудоемко. Как с помощью матрицы квантования улучшить качество изображения? Не секрет что быстро движущиеся участки - традиционно слабое место для семейства MPEG, в то время как статичные участки изображения кодируются очень хорошо. Отсюда следует вывод, что нельзя статику и участки с движением кодировать одинаково. Так как качество изображения зависит от стадии квантования, которая во многом зависит от используемой матрицы квантования, то меняя эти матрицы для разных участков видеоролика можно добиться улучшения качества изображения. Многие кодеки MPEG-2 делают это автоматически, но есть программы, позволяющие помимо этого задавать матрицы квантования вручную, например перекодировщик AVI2MPG2, который можно найти в сети Internet по адресу: http://members.home.net/beyeler/bbmpeg.html . Если ссылка умерла, воспользуйтесь нашей копией файла: bbmpg123.zip

Не обошли нововведения и алгоритмы предсказания движения. Данная секция обогатилась новыми режимами: 16x8 MC, field MC и Dual Prime. Данные алгоритмы существенно повысили качество картинки и, что немаловажно позволили делать ключевые кадры реже по сравнению с MPEG-1, увеличив, таким образом, количество промежуточных кадров и повысив степень сжатия. Основной размер блоков, на которые разбивается изображение, может быть 8х8 точек, как и MPEG-1, 16х16 и 16х8, что впрочем используется только в режиме 16х8 МС.
Из-за некоторых особенностей реализации алгоритмов предсказания движения в MPEG-2 появились некоторые ограничения на размер картинки. Теперь стало необходимо, чтобы разрешение изображения по вертикали и горизонтали было кратно 16 в режиме покадрового кодирование, и 32 по вертикали в режиме кодирования полей (field-encoder), где каждое поле состоит из двух кадров. Размер фрейма увеличился до 16383*16383.
Было введено еще два соотношения цветовых плоскостей и плоскости освещенности - 4:4:4 и 4:2:2.

Помимо вышеперечисленных улучшений в формат MPEG-2 были введены еще несколько новых нигде ранее не используемых алгоритмов компрессии видеоданных.
Наиболее важные из них - это алгоритмы под названиями Scalable Modes, Spatial scalability, Data Partitioning, Signal to Noise Ratio (SNR) Scalability и Temporal Scalability. Несомненно, эти алгоритмы внесли весьма важный вклад в успех MPEG-2 и заслуживают более подробного рассмотрения.

Scalable Modes - набор алгоритмов, который позволяет определить уровень приоритетов разных слоев видеопотока. Поток видеоданных делится на три слоя - base, middle и high. Наиболее приоритетный на данный момент слой (например, передний план) кодируется в большим битрейтом

Spatial scalability (пространственное масштабирование) - при использовании этого алгоритма, базовый слой кодируется с меньшим разрешением. В дальнейшем полученная в результате кодирования информация ислользуется в алгоритмах предсказания движения более приоритетных слоев.

Data Partitioning (дробление данных) - этот алгоритм дробит блоки размером в 64 элемента матрицы квантования на два потока. Один поток данных, более высокоприоритетный состоит из низкочастотных (наиболее критичные к качеству) компонентов, другой, соответственно менее приоритетный состоит из высокочастотных компонентов. В дальнейшем эти потоки обрабатываются по-разному. Именно поэтому в MPEG-2 и динамические и статистические сцены смотрятся весьма неплохо, в отличие от MPEG-1, где динамические сцены традиционно ужасны.

Signal to Noise Ratio (SNR) Scalability (масштабирование соотношения сигна/шум) - при действии этого алгоритма разные по приоритету слои кодируются с разным качеством. Низкоприоритетные слои более дискретизированны, более грубы, соответственно содержат меньше данных, а высокоприоритетный слой содержит дополнительную информацию, которая при декодировании позволяет восстановить высококачественное изображение.

Temporal Scalability (временное масштабирование) - после действия этого алгоритма у низкоприоритетного слоя уменьшается количество ключевых блоков информации, при этом высокоприоритетный слой, напротив содержит дополнительную информацию, которая позволяют восстановить промежуточные кадры используя для предсказания информацию менее приоритетного слоя

У всех этих алгоритмов много общего: все они работаю со слоями потока видеоданных, использование этих алгоритмов позволяет достичь высокого сжатия при практически незаметном ухудшении картинки. Но есть еще одно свойство этих алгоритмов, возможно, что и не такое приятное. Использование любого из них, делает видеоролик абсолютно несовместимым с форматом MPEG-1. Поэтому эти алгоритмы были далеко не в каждом кодеке MPEG-2.
В результате появилось множество форматов, разного разрешения, качества, с разной степенью сжатия и с разным соотношением размер/качество. С целью наведения порядка и окончательной стандартизации MPEG-2 комитетом MPEG были введены понятия уровней и профилей. Именно уровни и профили, а так же их комбинации позволяют однозначно описать практически любой формат из семейства MPEG-2.

Уровни

название уровня разрешение максимальный битрейт качественное соответствие
Low 352*240*30 4 Mbps CIF, бытовая видео кассета
Main 720*480*30 15 Mbps CCIR 601, студийное TV
High 1440 1440*1152*30 60 Mbps 4x601, бытовое HDTV
High 1920*1080*30 80 Mbps Hi-End видеомонтажное оборудование

Профили

Допустимые комбинации Профилей и Уровней

Simple Main Main+ Next
High No No 4:2:2
High 1440 No Main c Spatial Scalability 4:2:2
Main 90% от всех Main c SNR Scalability 4:2:2
Low No Main c SNR Scalability No

Наиболее популярные стандарты.

Название Разрешение

На данный момент большинство операторов кабельного и спутникового телевидения используют стандарт MPEG2 для передачи своих сигналов. Стандарт MPEG2 был разработан рабочей группой Moving Pictures Experts Group Международной Организации Стандартизации. MPEG2 опубликован как международный стандарт ISO/IEC 13818. Данный стандарт описывает лишь общие принципы компрессии, оставляя детали для изготовителей кодеров.

В основе алгоритма сжатия заложены особенности восприятия изображения человеком. Например, глаз человека намного лучше воспринимает градации яркости, чем цветности; градации одних цветов воспринимаются лучше, других - хуже.

Кроме того, чаще всего на экране показывается неподвижный фон и несколько движущихся объектов. Поэтому достаточно лишь передать информацию о базовом кадре, а затем передавать кадры, содержащие информацию о движущихся объектах.

Еще один принцип, который применяется при компрессии изображения в стандарте MPEG2 - это отбрасывание малозначимой информации, аналогичный принципам, используемым в графическом формате JPEG.

Но вернемся собственно к теме нашего разговора. Развитием технологий управляет принцип: лучше, красивее, больше c меньшими затратами и по меньшей цене. В нашем случае подразумевается картинка лучшего качества, при меньшей ширине информационного канала (спутникового, кабельного, эфирного). Совершенствование видео кодеков формата MPEG2 привело к тому, что сейчас для передачи изображения требуется канал с пропускной способностью в 2 раза меньше, чем в начале эры цифрового вещания. С течением времени стало очевидным, что новые разработки позволяют значительно уменьшить объем передаваемой информации, но они не соответствуют существующему формату MPEG2. Поэтому перед специалистами встала задача разработки более универсального и соответствующего современным технологиям стандарта.

Для цифрового спутникового телевидения , использующего MPEG2, с разрешением 720 на 576 точек максимальная скорость информационного потока 15 Мбит/сек, а практически используемая скорость потока - 3-4 Мбит/сек. На одном транспондере (приемнике - передатчике) на спутнике обычно умещается 8-12 каналов.

Поскольку HDTV предполагает разрешение 1920 на 1080 точек, т.е. площадь экрана в 5 раз больше по сравнению с обычным телевидением, то для вещания одного канала HDTV в стандарте MPEG2 потребовалось бы арендовать половину транспондера.

Новым шагом в развитии алгоритмов сжатия изображения стал стандарт MPEG4. Идея стандарта MPEG4 заключается не в стандартизации одного продукта, а объединении нескольких подстандартов из которых поставщики могут выбрать один, наиболее соответствующий их задачам.


Наиболее важные подстандарты:

  • ISO 14496-1 (Системы), формат контейнера MP4, анимация/интерактивность (например, DVD меню)
  • ISO 14496-2 (Видео #1), Продвинутый Простой Профайл (Advanced Simple Profile - ASP)
  • ISO 14496-3 (Аудио), Продвинутое Кодирование Аудио (Advanced Audio Coding - AAC)
  • ISO 14496-10 (Видео #2), Продвинутое Кодирование Видео (Advanced Video Coding - AVC), так же известное как H.264.

Я не буду перечислять особенности технологий и алгоритмов, которые применялись при разработке формата MPEG4.
Перейдем к самому важному: совместное применение DVB-S2 (усовершенствованный стандарт цифровой передачи данных) и H.264 позволяет разместить 6-8 каналов в транспондере, но уже HDTV телевидения . Необходимо отметить, что как всегда увеличение качества не проходит бесплатно: значительно возросло количество вычислений как в приемниках так и на передающем оборудовании. К сожалению, это в значительной степени повлияло на стоимость оборудования для потребителей и для вещателей.

За короткое время аббревиатура MPEG стала нам настолько привычной, что нет повода задуматься, как это работает

Анастасия Близнецова

Аналого-цифровое преобразование


Типы предсказания смещения изображения в кадрах


Дискретно-косинусное преобразование

MPEG-2 — это стандарт, предназначенный для кодирования сигналов цифрового вещательного телевидения, так что начинать рассказ о нем надо с истории цифрового видео. Она, как ни странно, связана вовсе не с компьютерами, как кажется сейчас, а с телевещанием, ведь недостатки аналогового сигнала сказывались прежде всего на телевизионной аудитории. Основных проблем две — это стремительное падение качества с каждым новым перезаписыванием (страшно вспомнить, что такое «пятая копия» на VHS) и большие помехи при передаче сигнала, с которыми очень сложно бороться. Первое сказывается на качестве программ, второе — на качестве картинки у зрителя. Способ избавиться от этих недостатков был известен еще с 50-х годов — это перевод сигнала в цифровую форму. Однако технические возможности для оцифровки видео в реальном времени появились лишь около четверти века тому назад, и в 1979 году Европейский Вещательный Союз (EBU) и Общество инженеров кино и телевидения (SMPTE) совместно подготовили проект международного стандарта цифрового кодирования цветного телевизионного сигнала, а в 1982 году стандарт был принят. MPEG-2 базируется именно на этом стандарте ITU-R BT.601.

Как получают цифровой видеосигнал

Известно, что любой из миллионов оттенков, которые различает человек, представим в виде комбинации трех опорных цветов: красного (Red), зеленого (Green) и синего (Blue) — это так называемая цветовая модель RGB. Используя эту модель, цветной аналоговый сигнал (например, изображение, которое «видит» объектив аналоговой видеокамеры) можно разложить на RGBкомпоненты.

Однако для телевидения такое разложение не подходило: при переходе к цветному вещанию требовалось, чтобы цветные передачи можно было смотреть на черно-белых телевизорах, а это невозможно, если сигнал состоит из RGBкомпонент. Решением стало преобразование RGBсигналов в сигнал яркости Y и два цветоразностных сигнала U и V — в этом случае информация о цвете (U и V) передается отдельно от информации о яркости Y, и в черно-белом телевидении используется только сигнал яркости, а в цветном — яркости совместно с цветом. Заодно оказалось возможным уместить цветной телевизионный сигнал в стандартную полосу пропускания: за счет того, что человеческий глаз менее чувствителен к пространственным изменениям цвета, чем к изменениям яркости, информацию о цвете можно «урезать» без ущерба для восприятия.

Для цифрового кодирования одинаково подходят оба разложения.

Итак, для того чтобы сформировать цифровой сигнал, необходимо выполнить над каждой компонентой аналогового сигнала (R, G, B или Y, U, V) следующие операции: дискретизацию, квантование и кодирование.

Дискретизация — это представление непрерывного аналогового сигнала последовательностью значений его амплитуд (так называемых отсчетов). Частота, с которой выбираются значения, называется частотой дискретизации. На схемах справа показаны аналоговый и дискретизированный с частотой 1/T сигналы. Очевидно, что чем больше частота дискретизации, тем точнее будет воспроизведен аналоговый сигнал. Чтобы получить изображение высокого качества, частота дискретизации должна быть не менее 12 МГц (то есть 12 млн отсчетов в секунду). В стандарте цифрового кодирования она выбрана равной 13,5 МГц.

Квантование — округление значений отсчетов. Так как человеческий глаз обладает конечной разрешающей способностью, то передавать абсолютно точно все значения отсчетов нет необходимости. Было придумано заменять величину отсчета ближайшим значением из некоторого набора фиксированных величин, которые называются уровнями квантования, то есть округлять до ближайшего уровня. На схеме справа показан квантованный сигнал. Для создания сигнала нужного качества достаточно 256 уровней квантования.

И наконец, кодирование. Так как квантованный сигнал может принимать только конечное число значений (в соответствии с набором уровней квантования), то для каждого отсчета можно представить его просто числом, равным собственно порядковому номеру уровня квантования. Это число может быть закодировано двоичными символами (например, нулями и единицами). Чтобы закодировать 256 уровней квантования, требуется как минимум восемь бит (28 = 256), то есть значение каждого отсчета передается восемью битами.

В итоге после дискретизации, квантования и кодирования мы получили из аналогового сигнала набор импульсов, принимающих только два значения — 0 и 1, которые уже можно передавать как обычные данные. Это называется аналого-цифровым преобразованием, или АЦП.

Легко посчитать необходимую скорость потока при передаче оцифрованного нами сигнала: умножим восемь бит на количество отсчетов, передаваемых в секунду (не забудем, что у нас три компоненты): 8 [бит] х 13,5 [МГц] х 3 = 324 Мб/с!!! Работать с такими потоками — очень дорогое и почти недоступное удовольствие (для сравнения: стандартный модем передает со средней скоростью 33,2 кб/с, то есть в десять тысяч раз медленнее).

Здесь самое время напомнить о том, что, как и в аналоговом телевидении, при оцифровке Y, U и V можно безболезненно удалить часть информации о цвете, то есть уменьшить в несколько раз частоту дискретизации цветоразностных сигналов. Поэтому кодирование YUV (называемое раздельным) с точки зрения величины потока получается более выгодным, чем RGB. При раздельном кодировании принято указывать соотношение частот дискретизации компонент. Например, 4:2:2 означает, что Y передается в каждом отсчете в каждой строке, а U и V — в каждом втором отсчете в каждой строке (то есть частота дискретизации Y равна 13,5 МГц, а U и V в два раза меньше — 6,75 МГц).

Сжатие

Однако результаты кодирования в отношении величины цифрового потока все равно никого не устраивали. Для вещательного телевидения требуется раздельное кодирование как минимум 4:2:2 — это 216 Мб/с. Даже если не говорить о передаче данных, просто писать такой поток на ленту или на винчестер представляется проблемой.

Выход один: сжатие цифрового видеопотока. К счастью, цифровой видеосигнал по сути своей избыточен и потому для сжатия подходит как нельзя лучше: можно без потерь с точки зрения восприятия сжимать видео даже в 30 раз! Избыточность видеосигнала, во‑первых, вызвана тем, что человеческий глаз не замечает изменений яркости и цвета на небольших участках, то есть мелких деталей. Эта избыточность называется пространственной и удаляется при внутрикадровом кодировании — сокращении информации в пределах одного кадра.

Во-вторых, обычно в пределах нескольких секунд следующие друг за другом кадры слабо отличаются друг от друга — это так называемая временная избыточность. Нет необходимости передавать все кадры полностью, для некоторых достаточно передать только отличия от предыдущих или последующих кадров. Временная избыточность удаляется межкадровым кодированием, при котором сокращается информация о некоторой группе кадров в целом.

Надо сказать, что со времен начала работы с цифровым видео было создано великое множество форматов сжатия: от Cinepak и Intel Indeo до H.263, MJPEG и DV. Часть из них удаляют только пространственную избыточность (как DV или MJPEG), но некоторые алгоритмы (например, Intel Indeo) используют и межкадровую разность.

Жизнь с таким количеством несовместимых друг с другом стандартов оказалась слишком уж сложной, поэтому в 1988 году была создана специальная группа экспертов — Moving Picture Experts Group (MPEG), которая должна была разработать методы сжатия и восстановления цифрового видеосигнала. Над стандартом MPEG2 группа начала работать в 1990 году. Стандарт предназначался специально для цифрового телевидения, то есть для передачи телевизионных изображений высокого качества, и был принят уже в 1994 м. Сегодня это самый распространенный и самый многофункциональный из всех стандартов MPEG.

Как осуществляется сжатие в MPEG-2

Сначала в каждом кадре последовательно выбираются элементы изображения размером 16 х 16 пикселей — это так называемые макроблоки.

В MPEG принято кодирование YUV, поэтому каждый макроблок представлен в виде набора блоков 8 х 8 пикселей — каждый блок несет информацию или о яркости, или о цвете. Например, в формате цветности 4:2:2 потребуется четыре блока 8 х 8 с информацией о яркости и по два блока 8 х 8 с информацией о каждой цветоразностной компоненте, всего восемь блоков. Каждый элемент в блоке яркости или цвета представляет собой значение отсчета. В дальнейшем MPEG-2 работает уже с макроблоками.

В MPEG-2 выделено три типа кадров. I-кадры (Intra) — опорные кадры, кодирование каждого макроблока в которых осуществляется без ссылок на макроблоки в предыдущих или последующих кадрах. По сути, I-кадры закодированы как неподвижные изображения.

Pкадры (Predicted) — кадры, макроблоки в которых закодированы относительно предшествующих I или P-кадров (хотя не все макроблоки могут быть так закодированы, об этом ниже). Изображение в кадре предсказывается с использованием информации предыдущего кадра — так называемое предсказание «вперед». Поэтому Pкадры частично содержат только ссылки на макроблоки в предыдущих кадрах, и, таким образом, сжаты они сильнее, чем I-кадры.

B-кадры (Bidirectionally Predicted) — кадры, макроблоки в которых закодированы относительно или предыдущих, или последующих, или и тех, и тех I или P-кадров. Здесь реализовано двунаправленное предсказание («вперед» и «назад»): изображение в кадре предсказывается с использованием информации из предыдущего и из следующего кадра. То есть считывание кадров декодером должно происходить быстрее их восстановления.

Если оказывается, что макроблок в P-кадре или B-кадре невозможно закодировать со ссылкой на другие кадры (например, в случае, если в кадре появился новый объект), то макроблок кодируется как макроблок в I-кадре.

Кадры объединены в последовательности (Group Of Pictures, GOP), и предсказание всегда осуществляется только в пределах одной группы. Понятно, что при таком условии каждая группа должна начинаться с I-кадра, несущего наиболее полную информацию об изображении, ведь I-кадр является точкой отсчета, относительно которой кодируются остальные кадры. Было бы замечательно, если бы I-кадры всякий раз приходились на начало сюжета, но, к сожалению, все сюжеты имеют разную длительность.

В MPEG-2 определены стандартные типы последовательностей — например, IPBBPBBPBBPBBPBB. Если сюжет почти не меняется от кадра к кадру, то можно кодировать с большим количеством B-кадров, а если требуется очень высокое качество — наоборот, использовать группы, состоящие только из одного I-кадра. В принципе, можно оптимизировать выбор типа кадра — например, при появляющихся больших ошибках предсказания в B-кадрах добавлять I-кадры в последовательность.

Сразу скажем, слово «предсказание» несколько путает — это термин, хотя и устоявшийся, но не очень верный. Мы ничего не предсказываем, мы абсолютно точно определяем, что должно быть в кадре. Для этого вычисляется ошибка предсказания — разница между изображением, взятым из другого кадра, и изображением в текущем кадре, и эта разница используется при декодировании.

Под компенсацией движения понимается учет смещения изображения относительно предыдущих или последующих кадров. Компенсация движения в P и B-кадрах реализуется следующим образом: для каждого найденного в предыдущем/следующем кадре макроблока вычисляется вектор движения, то есть определяется, каково относительное смещение соответствующего макроблока. Таким образом, при предсказании с компенсацией движения декодеру передаются не только ошибки предсказания, но и векторы движения.

Теперь мы подходим к внутрикадровому кодированию. Нам нужно сжать информацию в макроблоках, которые ни на что не ссылаются. Это делается с помощью дискретно-косинусного преобразования (ДКП), в основе которого лежит преобразование Фурье. ДКП отнюдь не прерогатива MPEG, оно применяется при внутрикадровом кодировании очень во многих форматах сжатия — в том числе, для сжатия статических изображений (всем известный JPEG, разработанный для цифровой фотографии группой Joint Photographic Experts Group).

Все основано на том, что человек хорошо различает форму объекта даже при нечетких границах. Поэтому, если сделать контуры менее резкими, зритель ничего не заметит, а вот объем передаваемой информации кардинально уменьшится. В оцифрованном сигнале каждый элемент в блоке есть значение отсчета, а каждый блок — соответственно, матрица значений отсчетов. Применение к матрице отсчетов ДКП позволяет выделить информацию о резких переходах и ее отбросить. То немногое, что остается, кодируется по специальному оптимизирующему алгоритму, в котором используются известные в технике кодирования приемы (и, в том числе, есть способы исправления ошибок при передаче данных).

Небезынтересно будет узнать, что практически все фильтры в графических редакторах построены на операциях над матрицей отсчетов. Примените в Photoshop фильтр, размывающий границы, — увидите ДКП в действии. И, кстати, сможете убедиться, что изображение даже с немного размытыми контурами сжимается JPEG гораздо эффективнее.

Для сжатия движущихся изображений требуются огромные вычислительные мощности, так что для компрессии в реальном времени обычно используются специальные платы и процессоры, то есть сжатие реализуется на аппаратном уровне.

Профили и уровни

Создатели MPEG-2 постарались максимально расширить область применения стандарта, и это было сделано при помощи системы профилей и уровней. Уровень определяет параметры цифрового сигнала: число отсчетов в строке, число кадров в секунду, размер потока и т. п. В профиле задаются параметры кодирования: типы кадров, формат цветности, набор используемых операций по сжатию данных, то есть определяется качество кодирования. Таким образом, стандарт дает пользователю возможность самому выбрать сжатие, подходящее для решения конкретной задачи — например, домашнее или профессиональное видео.

Идея профилей и уровней оказалась настолько плодотворной, что добавлением уровней удалось даже расширить стандарт для кодирования сигналов телевидения высокой четкости (ТВЧ). А ведь первоначально для ТВЧ разрабатывался MPEG-3, который был благополучно забыт, как только в MPEG-2 были введены соответствующие возможности.

Форматы видеозаписи

В стандарте MPEG нигде не определено, каким образом осуществляется непосредственно кодирование, он описывает только, как должен выглядеть результирующий поток данных, поскольку именно это важно для декодеров.

Кодирование может осуществляться как аппаратно, так и программно, и каждая фирма создает свои собственные алгоритмы (принципиально важен, например, алгоритм поиска смещенных макроблоков). При этом разработчики выбирают нужный профиль, уровень, необходимые операции по сжатию данных и, что очень важно при аппаратном кодировании, базу, на которой реализуется алгоритм (специальная плата, процессор и т. п.). Например, фирма Sony создала уже два формата видеозаписи на основе MPEG-2 — это Betacam SX и MPEG IMX. Оба они используют один и тот же профиль 422Р, но для них установлены разные размеры потоков данных и при кодировании используются разные аппаратные средства.

Объявление

Формат файлов MPEG Video

Разница между форматами MPEG и MPG совсем небольшая. MPEG - более новый формат, который представлен следующими подтипами: MPEG-1 - MPEG-4, MPEG-7 и MPEG-21. Сжатие с определенными потерями позволяет облегчить загрузку и выгрузку файлов, а также уменьшить размеры файлов при одновременном обеспечении высокого их качества. Эти файлы-контейнеры аудио- и видеоданных позволяют синхронизировать оба потока данных. Большое кол-во сервисов он-лайн стриминга используют файлы MPEG-1 для трансляции аудио, а также аудио/видеосигнала по кабельным сетям и через спутники. Система MPEG стала основой для создания файлов MP3. ОС Mac и Windows могут работать с файлами MPEG-1 и MPEG-2 с помощью различных программ, которые поддерживают такие форматы.

Технические сведения о файлах MPEG

Формат MPEG-1 кодирует видео и связанный с ним звук для последующего хранения с битрейтом в 1.5 Mб/с (ISO/IEC 11172) (при этом формат способен обеспечить и более высокий битрейт). Это позволяет кодировать файлы в форматы, по качеству близкие к качеству компакт-дисков иди не очень качественных дисков DVD. Формат MPEG-2 используется для телевещания с высоким разрешением. MPEG-3 используется в качестве стандарта масштабируемого сжатия с различными разрешениями для стандарта HDTV (позже этот формат был объединен с форматом MPEG-2 из-за практически полного отсутствия различий с последним). Формат MPEG-4 позволяет получить более высокой степени сжатия (по сравнению с MPEG-2), а также добиться более качественного сжатия с помощью соответствующих методов. В конце концов этот стандарт стали использовать для показа компьютерной графики. Формат MPEG-7 описан в стандарте ISO-IEV 15938, а формат MPEG-21 - в стандарте ISO/IEC 21000. При этом такие стандарты определяют общие принципы формирования медиаданных, а также предусматривают наличие авторских прав.