Кв антенны. Кв антенны Простейшие самодельные антенны

При изготовлении GP на низкочастотные диапазоны радиолюбители обычно вынуждены выбирать между эффективностью антенны и ее размерами.

Поскольку действующая высота GP диапазона 80 метров около 13 м то следует ожидать что при оптимальном использовании “удлиняющих" элементов антенна такой длины будет достаточно эффективной. Настроить короткую антенну в резонанс можно концевой емкостной нагрузкой или/и катушкой индуктивности.

Емкостную нагрузку обычно выполняют в виде нескольких проводников, расположенных перпендикулярно полотну излучателя и находящихся у его вершины.

Такой вид согласования обеспечивает максимальный КПД антенны и, следовательно является приоритетным Из конструктивных соображении длину проводников выбирают не более 0,03*лямбда, что ограничивает возможности этого метода.

Использование катушки индуктивности менее желательно, поскольку она заметно снижает как КПД антенны в целом так и ее полосу рабочих частот. Од нако для эффективного укорочения антенны на практике часто используют оба метода. Потери в катушке можно уменьшить если выполнить ее в виде одного или двух витков достаточно большого диаметра.

Хотя такие катушки индуктивности сложнее в изготовлении они обеспечивают большую полосу пропускания (при диаметре катушки около 0,01*лямбда она работает частично как излучатель).

Конструкция антенны

Преимущество подобной конструкции еще и в том что катушка вносит определенную ем кость относительно “зем ли", что дополнительно укорачивает антенну.

Рис. 1. Конструкция КВ антенны.

Комбинация этих двух методов и использована в антенне для диапазона 80 метров (рис 1) Основание антенны - металлическая труба выступающая над поверхностью земли на 3 м В нижней части к основанию присоединены пять радиально расходящихся и углубленных на 10 см в грунт проводов заземления длиной по 25 м.

Провода заземления изготовлены из оцинкованной стальной проволоки. В верхней части к основанию подключены шесть радиально расходящихся противовесов длиной по 19 м.

На основании закреплен (через изолятор) излучатель высотой 10,5 м, состоящий из двух отрезков металлических труб длиной 3 м (нижний) и 7,5 м (верхний). Отрезки излучателя механически соединены между собой через изолирующую втулку с крестовиной на которой расположена катушка индуктивности L.

Конструкция катушки индуктивности L показана на рис. 2. В изолирующей втулке закреплены четыре бамбуковые палки длиной 1 м. На концах палок установлены фарфоровые роликовые изоляторы, причем на одной из палок таких изоляторов два.

Катушка, изготовленная из антенного канатика диаметром 5 мм закреплена на этих изоляторах и своими концами подключена к верхней и нижней частям излучателя.

Рис. 2. Конструкция катушки индуктивности L.

Емкостная нагрузка на вершине излучателя выполнена из четырех электрически соединенных с ним отрезков антенного канатика длиной 2,5 м и диаметром 3 5 мм. растянутых вдоль бам буковых шестов (рыболовных удилищ).

Чтобы эти шесты не прогибались, их поддерживают капроновые шнуры. Излучатель в рабочем положении удерживают два яруса капроновых рас тяжек (по четыре в каждом).

Питают антенну 75-омным коаксиальным кабелем длиной 12 м. Между кабелем и трансивером включено согласующее устройство (см. статью "Спиральный GP для НЧ диапазонов” в “Радио’’, 2000, № 1 с. 64). Антенна хорошо показала себя при работе на сверхдальних трассах, обеспечивая связь со всеми континентами.

Эрнест Осьминкин (UA4ANV). Р-06-2000.

Практический опыт построения эффективных антенн на диапазон 80 метров

Часть I. Антенна RZ6AU.

1. Краткая предыстория. Весной 2005 года коллективная радиостанция RK6AXS лишилась своего помещения – история по нынешним временам обычная. Поиски места для новой позиции продолжались несколько месяцев – место мы нашли. Причём, такое, которое позволяет не слишком сдерживать воображение в планировании строительства антенн. После того, как был установлен необходимый минимум, позволяющий вести относительно полноценную работу в эфире (TH7DX от HyGain на ВЧ, Inv V и дельта 40м на НЧ), встал вопрос о строительстве того, ради чего мы, собственно, и искали место: серьёзного контестового антенного хозяйства. Поскольку зима была на носу, начать решили с диапазонов 80 и 160 м.

2. Буридановы муки. Многие радиолюбители нас поймут: когда после городской тесноты получаешь десяток гектар под антенное поле, хочется реализовать всё, о чём в городе только мечталось. Всерьёз для диапазона 80 мы рассматривали 6 вариантов:

  • система вертикальных фазированных штырей с переключаемой диаграммой направленности.
  • 2 el rotary YAGI
  • 3 el rotary YAGI
  • 2 или 3 el wire YAGI (две антенные системы, переключаемые в основных направлениях – для UA6A это W(EU)-VK и JA-SA)
  • 2 el Delta Loop по образу и подобию того, что пока ещё не упало на лунную антенну RN6BN.
  • Антенна, разработанная столичным ренегатом (и нашим старым другом) Валерием Шиневским, RZ6AU. Оригинальное описание этой антенны можно посмотреть или KB и УКВ 9/2000.

Для диапазона 160 м список был вдвое короче:

  • система штырей с переключаемой ДН.
  • 2 el Delta Loop
  • Антенна RZ6AU.

Сразу хотим внести ясность: за годы существования RK6AXS накоплен достаточный опыт строительства и согласования серьёзных антенных систем. Ресурсы, необходимые для подъёма любой из вышеперечисленных антенн, у RK6AXS также имеются. YAGI на восьмидесятку мы пока не поднимали, но сходные задачи решать приходилось.

Не будем описывать долгие ломания копий, аргументы и контраргументы. От идеи быстрого (до начала зимы) подъёма YAGI пришлось отказаться сразу же. Сложная и тяжёлая конструкция требует многих месяцев труда и серьёзных вложений в строительство. А хотелось начать работать уже зимой, в пик прохождения. Два элемента Дельта Луп в практической эксплуатации проявили себя исключительно хорошо, но, однако, не лучше системы из 4-х фазированных штырей (при аналогичных, если не бОльших затратах труда и денег). Антенна RZ6AU манила нас, как сыр лисицу. Простая, лёгкая, очень дешёвая и с выдающимися заявленными характеристиками. Подумать только: 5.5 дБ усиления! 30 дБ подавления заднего лепестка! НА 160 МЕТРОВ!!!

После долгих консультаций с самим RZ6AU было решено начинать именно с неё. Сразу на 160-метровый диапазон. Валера настойчиво нам её рекомендовал. Дополнительно он дал несколько советов:

  • диэлектрическая мачта заметно улучшит характеристики антенны. Как минимум, хорошее подавление заднего лепестка будет осуществляться в более широкой полосе.
  • в качестве согласующего устройства лучше всего применить резонансный автотрансформатор.
  • особое внимание уделить качеству заземления.

3. Как это выглядит. Для тех, кому лень идти по приведённой выше ссылке, кратко обрисуем, что собой представляет антенна RZ6AU. Цитирую автора:

Антенна представляет собой систему из двух одинаковых вертикальных полуволновых петлевых вибраторов с активным шунтовым питанием. Для уменьшения высоты и упрощения конструкции верхние углы вибраторов на изоляторах сведены к вершине мачты высотой 25,00 м (в участке 3,75...3,8 МГц высота мачты 13 м, далее в скобках будут указываться размеры для DX-окна 80-метрового диапазона) и отстоят от нее на 0,20 (0,20) м.


Рис.1.

Наличие неизолированной металлической мачты указанной длины внутри рамок на параметры антенн не влияет.

Четыре верхних части вибраторов длиной по 25,88 (13,04) м расходятся от мачты под прямыми углами, опускаясь к земле до высоты 6,00 (3,00) м.

В этих местах полотно вибратора пропускается сквозь изолятор и, изгибаясь, уходит к точке питания, отстоящей на 10,00 (4,72) м от основания мачты.



Рис.2.

К изоляторам прикреплены четыре растяжки, служащие как бы продолжениями верхних частей вибраторов, вместе с которыми они крепят вершину мачты (подобно элементам двухдиапазонного Inverted Vee).

Длина части вибратора от изолятора до точки питания составляет 14,07 (6,08) м (рис.5 и 6).

Рамки выполнены из канатика или биметалла диаметром 3...4 мм.

Два отрезка 75-омного кабеля длиной по 10,00 (4,72) м подключаются к противоположным рамкам и сходятся к основанию мачты.

Один конец рамки подключается к системе заземления, второй к центральному проводнику.

Возле мачты оплетки кабелей также заземляются, а между центральными проводниками включается фазосдвигающий конденсатор. Изменение направления излучения производится подключением выхода согласующего устройства к соответствующему концу конденсатора (посредством управляемого из Shack"a реле). Кабель питания от трансивера подключается ко входу согласующего устройства. Схема СУ может быть любой. Конец цитаты.


Рис.3.


Рис. 4.

Заявленные характеристики антенны:

  • подавление заднего лепестка: на частоте 1830 кГц -22 дБ, на 1845 кГц -31 дБ, на 1860 кГц -19 дБ;
  • усиление антенны соответственно 5,3...5,5...5,7 дБ.

4. Стройка. Сами виноваты. Серьёзное строительство начали со 160 м.

Модель на 7 мгц, выполненную на телескопической удочке с десятком противовесов, ставили в спешке, сравнение с таким же телескопическим штырём на диапазон 40 метров носило несколько поверхностный характер. Антенна работала, принимала, вроде, не хуже штыря, демонстрировала наличие хорошей диаграммы направленности. Моделирование происходило в чистом поле, испортившаяся погода не позволила сравнить антенны скурпулёзно. Единственное QSO с VK, проведённое телефоном мощностью 100 Ватт, убедило нас в том, что антенна работает .

В R-Quad (спасибо UA6BGB) были закуплены стеклотекстолитовые трубы. Поскольку авторитет RZ6AU и его репутация разработчика реально работающих антенн очень высоки, трубы были закуплены в количестве, достаточном для изготовления 4-х диэлектрических мачт на 80 м и двух на 160 м. К заземлению подошли максимально ответственно: в точках заземления в грунт были забиты квадратом 4 арматуры длиной 2 м и обварены по периметру такими же двухметровыми отрезками арматуры. По диагонали с соблюдением надёжного электрического контакта были прикручены два отрезка биметалла Ф4 мм – к ним потом припаивались противовесы.

Собранная диэлектрическая мачта высотой 24 метра, оказалась слишком гибкой. Поднять её не удалось даже методом «падающей стрелы» с семью ярусами растяжек. Дело в том, что наибольший из доступных диаметров стеклотекстолитовых труб составляет всего 45 мм – он, соответственно, и был у нас стартовым. Финишный – 18 мм. Мачта падала раз за разом, едва преодолев угол 45 градусов. По нашим оценкам, стартовый диаметр стеклотекстолитовой трубы для обеспечения необходимой упругости при такой длине мачты должен составлять 80-90 мм – купить такие негде. Финишный – не менее 30. Затею с подъёмом антенны на диапазон 160 м пришлось отложить.

Зато восьмидесяточную мачту высотой 14 метров из тех же труб мы подняли одной рукой минуты за три. О конструкции мачты: концы труб вставлялись один в другой (диаметры подобрали соответствующие) на длину 30 см и фиксировались саморезами. Ещё полчаса потратили на выравнивание растяжек и придание полотнам антенны нужной геометрии. В качестве оттяжек применялась обычная капроновая верёвка. Тут всплыло первое несоответствие реальной конструкции авторскому описанию. Показанное красным цветом на рис. 5 расстояние никак не может быть равным ТРЕМ метрам. После подъёма антенны от обеих точек заземления рамок было проложено по 100 медных противовесов длиной (опять-таки, рекомендации автора) 10 метров. Точки заземления были подготовлены так же, как и для антенны на 160 м – арматура, электросварка, биметалл, пропайка.


рис. 5.

5. Настройка. Второе несоответствие – гораздо более серьёзное – всплыло на стадии согласования антенны. Точнее, ещё на стадии моделирования её на 7 Мгц. Если заземлить отрезки кабеля в точках, выделенных на рис. 6 красным цветом, как того требует авторское описание, никакой диаграммы направленности у антенны не будет. Почему – пусть разбираются теоретики, если кому-то из них вдруг станет любопытно. Данная статья написана исключительно на практическом материале.


рис. 6.

Это несоответствие стоило нам нескольких драгоценных часов на стадии моделирования – именно с ним мы проваландались настолько долго, что не успели потом как следует сравнить антенну с классическим штырём. Найти причину отсутствия диаграммы направленности нам помог сам автор – по телефону он порекомендовал отключить заземление отрезков кабеля в этих точках – и антенна сразу заработала.

Впрочем, «сразу» это преувеличение. Антенна весьма и весьма непроста в настройке и согласовании. За долгие часы, проведённые на морозе (большую часть – ещё и в темноте, с антенной возились после работы) мы выработали такую методу:

1. В качестве С1 берём обычный КПЕ от вещательных приёмников, либо другой, подходящей ёмкости. 2. Подключаем трансивер непосредственно к контактам реле К1. 3. Встроенный тюнер трансивера ОТКЛЮЧАЕМ. 4. Определяем резонансную частоту антенны. КСВ будет заметно >1 (у нас – чуть меньше 2). При необходимости – удлиняем или укорачиваем рамки. 5. Не обращая внимания на КСВ, отстраиваем антенну по максимуму подавления заднего лепестка. 6. Подключаем согласующее устройство. Настройки антенны изменятся. 7. Если настройки антенны изменились существенно – применяем другой способ согласования. 8. Подстраиваем антенну по КСВ. Настройки снова изменятся. 9. Подстраиваем антенну по максимуму подавления. КСВ увеличится. 10. Повторяем пункты 7 и 8 до получения максимального подавления при минимальном КСВ. 11. Измеряем емкость С1 и меняем его на постоянный с соответствующим номиналом ёмкости и КВАР. В случае использования емкостей в СУ – измеряем и их и также заменяем на постоянные.

Капризничала антенна не переставая. Уровень КСВ и подавления менялся в зависимости от количества людей, участвовавших в согласовании, от высоты стола с аппаратурой, от силы ветра, так или иначе менявшего геометрию рамок, от наличия в радиусе 30 метров каких-либо крупных металлических предметов и т.д. Из за этого, например, пришлось отказаться от идеи подсветить операционное поле фарами подогнанной машины: рамка, к которой автомобиль подъехал на 20 метров, сразу и сильно уплыла вниз по частоте. Но, как бы то ни было, антенну мы настроили.

6. Ходовые испытания. К моменту завершения настройки антенны RZ6AU на позиции RK6AXS имелась только одна антенна на диапазон 80 метров – Inv V с высотой подвеса 19 м.

Первый этап испытаний заключался в сравнении с этим самым «инвертедом».

Что и говорить, у «инвертеда» она выигрывает заметно. Это слышно сразу, причём на всех трассах. Первое что «бросается в уши» она гораздо меньше шумит. То есть, при аналогичном уровне полезного сигнала, уровень шумов у Inv V выше на три балла. На ближних трассах она не проигрывает «инвертеду» по уровню, на дальних – заметно у него выигрывает. Всё это, разумеется, в направлении лепестка ДН. В других направлениях, она, как и положено, проигрывала соответствующее количество баллов.

Тем, кто долго работал на «верёвки» а потом поставил себе штырь, должно быть знакомо это чувство: на верёвку ты не слышишь ничего, а переключаешься на штырь – бах! – и из под уровня шумов отчётливо слышен сигнал какого-нибудь VK9. Снова переключаешься на верёвку – нет на частоте даже признаков никакого VK9. А на штырь – вот он, принимай на здоровье.

Так вот. Ничего подобного в сравнении с Inv V антенна RZ6AU не продемонстрировала. Выигрыш – да, диаграмма – да, но то, что было слышно на неё – было слышно и на «инвертед». Хуже. Иной раз на два-три балла хуже. Но слышно. Позже, на очень длинных трассах мы смогли отметить немногочисленные случаи, когда на RZ6AU что-то принять было можно, а на «инвертед» нет, но того волшебного эффекта, которого мы ожидали, исходя из своего опыта эксплуатации вертикальных антенн – не было и в помине. Вот тут мнения в коллективе разделились. UA6CW (начальник) утверждал, что такого эффекта быть и не должно, есть выигрыш – и ладно, UA6CT (скептик) настаивал на необходимости дополнительных затрат и подъёма полноразмерного четвертьволнового штыря – «чисто для сравнения». RA6ATN сохранял нейтральную позицию.

Второй этап испытаний антенны случился в перерыве телеграфного Кубка РФ. UA6CW, будучи на RZ6AZZ (там – штырь высотой 24 метра и вертикальный биквадрат на стометровой высоте) повесил CQ USA, UA6CT, находясь на RK6AXS в 22 километрах южнее, включался в каждое QSO, имитируя «антенну номер два», с просьбой дать реальный рапорт «каждой антенне». Мощность при этом была одинаковой на обеих позициях. Ох, какой обнадёживающий получился результат…

По оценкам корреспондентов из NA антенна RZ6AU не проигрывала биквадрату и во многих случаях – до 60% выигрывала у штыря от 5 до 10 дБ. Европа принимала сигналы всех трёх антенн с примерно одинаковым уровнем. После этого этапа испытаний споры скептиков и начальников обострились – установка штыря (согласитесь, немаленькой и не такой уж простенькой антенны) «только ради сравнения» уже не казалась такой уж хорошей идеей. И это очень хорошо, что скепсис иногда побеждает.

Третий этап. Поднаторевши на подъёме гибких мачт, штырь высотой 22,5 метра (дюралевые трубы, конец – отрезок биметалла, изолятор – стеклотекстолит, три яруса капроновых растяжек) мы поставили менее чем за час. И потом ещё восемь часов прокладывали противовесы, общим количеством 100 штук, длиной по 20 метров, с точкой заземления, подготовленной аналогично вышеупомянутым.

А теперь представьте наши эмоции, когда штырь, изготовленный из чего попало, поднятый кое-как и вообще никак не согласованный (КСВ на 3520 получился около 1,5 – нас это устроило) буквально надрал результат наших долгих и тяжких трудов на всех трассах и во всех направлениях . Штырь, конечно, не имеет направленности в горизонтальной плоскости, штырь, конечно, гораздо сильнее шумит (на три-четыре балла), да и вообще, само название «штырь» звучит уже несколько банально…

Штырь выигрывает от 0 (на ближних трассах) до 10 (на дальних) дБ в ста процентах случаев. А в некоторых – и нередких – случаях этот выигрыш является дискретной величиной «слышу/не слышу». Максимально зафиксированный выигрыш штыря составил 20 дБ, в двух или трёх случаях на совсем уж близких корреспондентах антенна RZ6AU выиграла у него пару-тройку дБ. Вот и всё.

Стоит лишь отметить, что пики QSB штыря не совпадают с пиками QSB антенны RZ6AU. Выдержка из аппаратного журнала RK6AXS приведена ниже.

Позывной Принятый рапорт (антенна RZ6AU) Принятый рапорт (штырь)

K4JJW 579 579 N4GI 569 589 NB3O 579 599 K8AJS 589 599 OK2SFO 599+10 599+40

Автор антенны, которого мы ознакомили с результатами своих экспериментов, отреагировал лаконично. «Быть этого не может!» сказал наш старый друг Валерий Шиневский. И занялся исследованием возможных причин возникновения такой существенной разницы между характеристиками антенн. Предположение о том, что мы что-то сделали неправильно, отпало после детальной перепроверки последовательности наших действий и конструкции антенны. Предположение о влияния кабеля (от шека до антенны RZ6AU было почти вдвое дальше, чем до штыря) отпало после того, как мы подключили к антеннам кабели одинаковой длины. Предположение о взаимном влиянии антенн не нашло своего подтверждения в силу довольно значительного – 120 метров – удаления их друг от друга и взаимного расположения – штырь не попадает в ДН антенны RZ6AU. Осталось последнее предположение: «Противовесы у штыря двадцать метров, а у рамок – всего по десять. Удлиняйте противовесы!» Мы проложили дополнительно к имевшимся ещё 40 противовесов длиной 20 метров. Ничего не изменилось. Антенна RZ6AU работала точно так же (по уровням, по рапортам корреспондентов, по сравнению с Inv V и по нашим субъективным ощущениям) как и до установки штыря, штырь всё так же у неё выигрывал. Мы детально перебрали всю систему фазового сдвига и согласования. Мы пробовали менять длину рамок и их геометрию. Мы провели ещё одну ночь на снегу под антенной. Лучше она работать не стала. Результаты сравнений зафиксированы в аппаратном журнале, эксперимент признан завершённым.

7. Выводы.

Вывод радиотехнический. Антенна конструкции RZ6AU несомненно является работающей антенной системой, обладающей хорошей ДН и некоторым усилением относительно низко висящего диполя. Однако, КПД антенны оказался ниже, чем у четвертьволнового вертикального вибратора. Форма ДН, приведённой автором, полностью соответствует нашим эфирным впечатлениям, однако, заявленного усиления на практике достичь не удалось. Антенна чрезвычайно чувствительна к внешним влияниям. Наличие поблизости металла, как то: мачты приёмных ТВ-антенн, громоотводы, провода и т.п., могут существенно осложнить процесс её настройки и полностью нейтрализовать главное достоинство этой антенны – её диаграмму направленности.

Вывод спортивный. ДЕСЯТЬ дБ – это много. Для того чтобы достичь десятидецибельного преимущества в тесте, команды радиоспортсменов городят целые антенные поля, строят усилители, для питания которых требуются отдельные подстанции, забираются на горы и совершают прочие необъяснимые логически поступки. Если даже брать среднюю разницу со штырём на трассе UA6A – USA в 5 дБ – это всё равно много. Почти в четыре раза по мощности. В понимании RK6AXS такая антенна для работы в соревнованиях непригодна.

Вывод практический. Антенну RZ6AU можно смело рекомендовать радиолюбителям, проживающим в сельской местности и имеющим в качестве антенн «верёвки» она однозначно лучше низкого инвертед Ви. Наличие направленности и возможность переключения («отвернуться», например, от наших западных соседей при работе на 80 и 160 м иногда бывает жизненно необходимо) делают эту антенну весьма привлекательной и при этом относительно недорогой конструкцией. Кроме того, антенну в её варианте на 40 или 30 метров можно рекомендовать радиолюбителям, живущим в многоэтажках: места занимает немного, высоких мачт не требует, а шумит на порядок меньше штыря. UA6CT намерен дождаться исследований В. Шиневского по поводу возможности размещения на одной мачте антенн двух диапазонов и, в случае положительного результата, поставить аналогичную антенну на 40 и 30 м на крыше своего дома: в центре Краснодара уровень индустриальных помех велик настолько, что любой штырь превращается в генератор шума, подключённый ко входу трансивера.

Вывод перспективный. В 2006-м году RK6AXS для работы на НЧ-диапазонах будет использовать системы фазированных вертикальных четвертьволновых вибраторов. Эксперименты подтвердили высокое электрическое качество земли на позиции, кроме того, в их ходе был получен ценный опыт фазирования антенн. После подъёма YAGI на 40м будет проведён эксперимент по сравнению волнового канала и системы вертикальных вибраторов для диапазона 40 метров, на основании которого будет принято решение о целесообразности строительства YAGI на диапазон 80 метров.

Вывод маркетинговый. RZ6AU использовал для расчёта своей антенны популярную программу MMANA. Собственно, немалая часть аргументации Валерия сводилась к однозначному «MMANA не врёт!», а проигрыш штырю в конце концов был объяснён «несовершенством удалённого конструирования». Имея в своём коллективе специалистов по формированию масс, RK6AXS с сожалением констатирует возникновение среди радиолюбителей очередного религиозного феномена. Компьютерному моделировщику сейчас модно доверять больше, нежели практическим результатам. Видимо, не за горами времена, когда все проявления HAM-ства, включая строительство антенн, участие в соревнованиях, экспедиции, будут происходить лишь внутри компьютерных симуляторов. По твёрдому нашему убеждению, любая компьютерная программа есть не истина в последней инстанции, а всего лишь инструмент. И как инструмент, она не может быть совершенной. Известны случаи, когда, например, антенна YAGI, посчитанная в YAGI-оптимайзере работала расчётно, без настройки – и сразу! а аналогичная антенна, посчитанная в MMANA, на практике не обеспечивала расчётных характеристик. Известны случаи, когда реально работающая антенна, смоделированная в том же YAGI-оптимайзере, будучи перенесённой в MMANA, показывала совершенно иные характеристики, близко не корреллирующие с её измеренными на практике показателями. Известны и обратные случаи. За некоторые результаты разного подхода к программированию нам приходилось платить из собственного кармана. Наш уровень лояльности к YAGI-оптимайзеру бесконечно выше, но мы никому не навязываем своего взгляда на вещи и своей привычки к удобным нам инструментам. Проведённый эксперимент лишний раз подтвердил известное всем высказывание: «Практика – критерий истины».

8. Дополнение.

29.01.06, уже после написания этой статьи, мы подняли и согласовали в дополнение к нашему штырю ещё один – на расстоянии четверти волны. Выписку из аппаратного журнала приводить не буду, однако результат сравнения двух штырей с рамочной антенной был вполне предсказуем: минимум 6, в среднем 10 дБ выигрывала система двух фазированных штырей. Очень хорошая, кстати, система. Рекомендуем. J В скором будущем будут опубликованы результаты наших экспериментов со штырями.

Фотографии всех антенн можем выслать по запросу – пишите: [email protected] .

9. И последнее. Эксперимент обошёлся RK6AXS в цену неплохого трансивера – чуть больше тысячи долларов по курсу на декабрь 2005 г. (трубы, кабель, полотна, металл, инструменты, КПЕ, КВАРы и т.д.). Желающие могут его повторить J. Мы – отдаём своё предпочтение проверенным на практике конструкциям.

RK6AXS crew: UA6CW RA6ATN UA6CT

Одной из самых эффективных антенн для низкочастотного DX-инга является система фазированных вертикалов, то есть два…четыре вертикальных четвертьволновых излучателя (штыря), находящихся на расстоянии 1/8…1/4 длины волны друг от друга с непосредственным возбуждением каждого излучателя отдельной линией питания. Такие антенны при внешней простоте имеют выдающиеся показатели - усиление от 4 до 7 дБ по отношению к полуволновому диполю на высоте в 0,5 длины волны, подавление заднего лепестка до 20…30 дБ, вертикальный угол излучения от 15 до 30 градусов.

Дело за малым - найти свободную площадку размером в половину футбольного поля, раздобыть две (а лучше - четыре) дюралевых трубы высотой с двенадцатиэтажный дом, и нанять вертолет для их установки. Затем придется обложиться кучей радиотехнических букварей, чтобы понять толком - что же такое активное питание, поскольку доступная радиолюбительская литература, к сожалению, практически не дает необходимой информации, а антенны, описанные в классике типа Ротхаммеля, уже давно изучены, и очередное перелистывание новостей не приносит.

Осознание вышеизложенного, как правило, оптимизма не добавляет, и поэтому большинство радиолюбителей на TOP BAND обходится любым Inverted Vee (почему-то упорно именуемым «Инвентором» определенной частью, видимо, начинающих, коротковолновиков), либо «Дельтой», которые, впрочем, из-за малых (относительно длины волны) высот для действительно дальних связей малопригодны. Отдельные счастливчики ухитряются ставить укороченные вертикалы метров до тридцати. Остальные могут эту статью не читать.

Благодаря своевременным идеям Евгения (RU6BW), после нескольких бессонных ночей за монитором появилась предлагаемая конструкция.

Автор в этой статье не ставил цели вдаваться в теоретические глубины, касающиеся работы антенн с фазированным питанием. Многие пока скептически относятся к компьютерным расчетам в радиолюбительской практике. Но эта антенна работает весьма неплохо. Для начала можно попробовать соорудить «модель» на 80 метров.

Для начала рассмотрим смоделированные компьютером диаграммы направленности в вертикальной (рис.1) и горизонтальной (рис.2) плоскостях и графики зависимости подавления заднего лепестка (рис.3) и усиления (рис.4) от частоты:

— ширина главного лепестка в горизонтальной плоскости по уровню -3 дБ - 136 градусов;
— ширина главного лепестка в вертикальной плоскости по уровню -3 дБ - от 6 до 54 градусов (с максимумом 20 градусов);
— подавление заднего лепестка: на частоте 1830 кГц - -22 дБ, на 1845 кГц - -31 дБ, на 1860 кГц - -19 дБ;
— усиление антенны - соответственно 5,3…5,7 дБ.

Указанные параметры моделировались для системы заземления, состоящей из 16 дважды закольцованных (по периметру и посередине) противовесов длиной по 10 м над почвой средней проводимости. В точках питания внешнее кольцо подключено к вбитым в землю двухметровым трубам.

Не правда ли, антенна с такими параметрами очень похожа на полноразмерный трехэлементный «Волновой канал» на высоте 80 м? Впрочем, такое «чудовище» может только присниться.

Проанализируем эти цифры
1. Горизонтальный лепесток в 136 градусов при переключении излучения на противоположное без особых потерь в усилении перекроет большую часть направлений (впрочем, ориентировать антенну по излюбленным азимутам все равно желательно). В условиях RU6BW - это 80/260 градусов.
2. Вертикальный лепесток с одинаковой легкостью будет работать с отражениями на расстояния от сотен до тысяч километров.
3. Усиление в пределах рабочего участка практически не изменяется.
4. Подавление имеет приличные характиристики в участке всего 30 кГц, тем не менее, DX-окно перекрывается. Ниже будет рассмотрен вопрос о способе расширения участка.

Антенна представляет собой систему из двух одинаковых вертикальных полуволновых петлевых вибраторов с активным шунтовым питанием. Для уменьшения высоты и упрощения конструкции верхние углы вибраторов на изоляторах сведены к вершине мачты высотой 25,00 м (в участке 3,75…3,8 МГц высота мачты - 13 м, далее в скобках будут указываться размеры для DX-окна 80-метрового диапазона) и отстоят от нее на 0,20 (0,20) м. Наличие неизолированной металлической мачты указанной длины внутри рамок на параметры антенн не влияет.

Четыре верхних части вибраторов длиной по 25,88 (13,04) м расходятся от мачты под прямыми углами, опускаясь к земле до высоты 6,00 (3,00) м. В этих местах полотно вибратора пропускается сквозь изолятор и, изгибаясь, уходит к точке питания, отстоящей на 10,00 (4,72) м от основания мачты. К изоляторам прикреплены четыре растяжки, служащие как бы продолжениями верхних частей вибраторов, вместе с которыми они крепят вершину мачты (подобно элементам двухдиапа- зонного Inverted Vee). Длина части вибратора от изолятора до точки питания составляет 14,07 (6,08) м (рис.5 и 6).

Рамки выполнены из канатика или биметалла диаметром 3…4 мм.

Два отрезка 75-омного кабеля длиной по 10,00 (4,72) м подключаются к противоположным рамкам и сходятся к основанию мачты. Один конец рамки подключается к системе заземления, второй - к центральному проводнику. Возле мачты оплетки кабелей также заземляются, а между центральными проводниками включается фазосдвигающий конденсатор. Изменение направления излучения производится подключением выхода согласующего устройства к соответствующему концу конденсатора (посредством управляемого из Shack’a реле). Кабель питания от трансивера подключается ко входу согласующего устройства. Схема согласующего устройства может быть любой. На испытанной антенне использовался резонансный автотрансформатор.

Настройка

Весь процесс происходит на земле под мачтой и на операторском столе. При точном изготовлении подбирать длину вибраторов не нужно.

1. Настраиваем трансивер на середину рабочего участка. Включаем вместо фазосдвигающего конденсатора КПЕ с максимальной емкостью 1000 пФ. На входе согласующего устройства устанавливаем КСВ-метр, рассчитанный на измерения в линиях с сопротивлением применяемого кабеля (можно согласовать как 50, так и 75-омный коаксиал). Устанавливаем фазосдвигающий КПЕ в среднее положение.
2. В случае применения резонансного автотрансформатора, настраиваем согласующее устройство по минимуму КСВ подбором точки отвода контура и параллельной емкости. Желательно предварительно согласовать активную нагрузку с сопротивлением используемого кабеля, и в дальнейшем настройку не изменять.
3. Следующий этап - установка фазового сдвига. Запускаем в нескольких сотнях метров в направлении, перпендикулярном плоскости рамок, маяк с вертикально поляризованной антенной. Автор использовал каарцевый генератор на 1845 кГц с усилителем на КТ922, нагруженный на оплетку кабеля снижения TV-антенны, расположенный в полутора километрах от RU6BW. В крайнем случае, настраиваем трансивер на работающую станцию, расположенную в створе рамок, поближе к середине рабочего участка. Включаем противоположную рамку (можно ориентироваться по падению уровня сигнала) и настраиваем КПЕ по максимальному подавлению сигнала маяка.
4. Повторяем пункты 2, 3, 4 до получения отношения вперед/назад не менее 4…5 баллов.
5. Если при переключениях сильно изменяется КСВ, значит, допущены ошибки при отрезании антенного полотна, либо вблизи одной из рамок расположены проводники или другие отражатели. После настройки рамок вышеописанные процедуры необходимо повторить.
6. После окончательной настройки можно измерить емкость КПЕ и заменить его на постоянный конденсатор хорошего качества с соответствующей реактивной мощности.

Примечание

Хорошее подавление заднего лепестка, к сожалению, получается в достаточно узкой полосе частот RU6BW применил дистанционное управление вращением фазосдвигающего КПЕ с использованием микроредуктора с электродвигателем. Результат - превосходный. Теперь практически в любой точке диапазона без изменения геометрических размеров антенны стало возможным быстро и достаточно эффективно подавлять сигналы станций, находящихся в заднем секторе шириной около 90 градусов. При желании то же можно делать вручную, но с гораздо меньшими удобствами.

Приведенные компьютерные расчеты после изготовления системы в натуре и эфирной обкатки (TNX RU6BW) полностью подтвердились. Думается, это совсем неплохая альтернатива «Инвентору» при почти таких же затратах.

Тем не менее, хочется добавить следующее.

К сожалению определенная часть радиолюбителей думает, что наличие антенны с описанными параметрами автоматически гарантирует работу, скажем, Украины с Азией в любое время суток (к примеру, в обеденный перерыв). Вынужден разочаровать TOP BAND так назван потому, что это диапазон высшей категории сложности, и для серьезных достижений на нем необходимо многое знать и много работать. Способы получения результатов описаны. Приведенная разработка - лишь один из эффективных вариантов, надеюсь, достаточно доступной конструкции.

Даже представить себе невозможно, сколько антенн становится вокруг нас: мобильный телефон, телевизор, компьютер, беспроводной роутер, радиоприемники. Есть даже антенные устройства для экстрасенсов. Что такое антенна кв? Большинство людей, не связанных с радио, ответит, что это длинный провод или телескопический штырь. Чем он длиннее, тем лучше приём радиоволн. Доля истины в этом есть, но ее очень мало. Так каких же размеров должна быть антенна?

Важно! Размеры всех антенн должны быть соизмеримы с длиной радиоволны. Минимальная резонансная длина антенны равна половине длины волны.

Слово резонанс означает, что такая антенна может эффективно работать только в узкой полосе частот. Большинство антенн именно резонансные. Существуют и широкополосные антенны: за широкую полосу приходится расплачиваться эффективностью, а именно коэффициентом усиления.

Почему же работает стереотип, что чем длиннее кв антенны, тем они эффективнее? На самом деле это так, но до определённых пределов, так как это характерно только для средних и длинных волн. А с увеличением частоты размеры антенн можно уменьшить. На коротких волнах (это длины примерно от 160 до10 м) размеры антенн уже могут быть оптимизированы для эффективной работы.

Диполи

Самые простые и эффективные антенны – это полуволновые вибраторы, их ещё называют диполями. Запитываются они в центре: в разрыв диполей подаётся сигнал от генератора. Радиолюбительские портативные антенны могут работать как передающие, так и как приёмные. Правда, передающие антенны отличаются толстым кабелем, большими изоляторами – эти особенности позволяют им выдерживать мощность передатчиков.

Самое опасное место у диполя – это его концы, где создаются пучности напряжения. Максимум тока у диполя получается посередине. Но это не страшно, потому что пучности тока заземляют, тем самым, защищая приемники и передатчики от грозовых разрядов и статического электричества.

Обратите внимание! При работе с мощными радиопередатчиками можно получить удар от высокочастотных токов. Но ощущения будут не такими, как от удара от розетки. Удар будет ощущаться как ожог, без тряски в мышцах. Это получается из-за того, что высокочастотный ток течёт по поверхности кожи и вглубь тела не проникает. То есть от антенны можно подгореть снаружи, но внутри остаться нетронутым.

Многодиапазонная антенна

Довольно часто необходимо установитъ более одной антенны, но это не удается. И ведь помимо радиоантенны на один диапазон нужны антенны и на другие диапазоны. Решение задачи – использовать многодиапазонную антенну кв диапазона.

Обладая довольно приличными характеристиками, многодиапазонные вертикальные антенны могут решить антенную проблему для многих коротковолновиков. Они становятся очень популярными по ряду причин: нехватка пространства в стеснённых городских условиях, рост числа любительских радиодиапазонов, так называемая жизнь «на птичьих правах» при съёме квартиры.

Многодиапазонные вертикальные антенны не требуют много места для своей установки. Портативные конструкции можно расположить на балконе либо выйти с этой антенной куда-нибудь в близлежащий парк и поработать там в полевых условиях. Самые простые КВ антенны представляют собой одиночный провод с несимметричной запиткой.

Кто-то скажет укороченная антенна – это не то. Волна любит свой размер, поэтому кв антенна должна быть большой и эффективной. С этим можно согласиться, но чаще всего нет возможности для приобретения такого устройства.

Изучив интернет и посмотрев конструкции готовых изделий от разных фирм, приходишь к выводу: их очень много, и они очень дорогие. А всего в этих конструкциях провод для кв антенн и полтора метра штырька. Поэтому будет интересен, особенно начинающему, быстрый, простой и дешевый вариант самодельного изготовления эффективных кв антенн.

Вертикальная антенна (Ground Plane)

Ground Plane – это вертикальная антенна для радиолюбителей с длинным штырем, равным четверти длины волны. Но почему четверти, а не половине? Здесь недостающая половина диполя – это зеркальное отражение вертикального штыря от поверхности земли.

Но так как земля очень плохо проводит электричество, то в качестве нее используют либо листы металла, либо просто несколько проводов, раскинутых ромашкой. Их длину тоже выбирают равной четверти длины волны. Это и есть антенна Ground Plane, в переводе значит земляная площадка.

Большинство автомобильных антенн для радиоприёмников сделано по такому же принципу. Длина волны радиовещательной УКВ диапазона – это около трёх метров. Соответственно четверть полуволны будет 75 см. Второй луч диполя отражается в корпусе автомобиля. То есть такие конструкции должны принципиально монтироваться на металлической поверхности.

Коэффициент усиления антенны – отношение напряженности поля, получаемого от антенны, к напряженности поля в той же точке, но полученного от эталонного излучателя. Это отношение выражается в децибелах.

Рамочная магнитно-петлевая антенна

В тех случаях, когда простейшая антенна не может справиться с задачей, может использоваться вертикальная магнитно-петлевая антенна. Её можно сделать из дюралевого обруча. Если в горизонтальных рамочных антеннах на их технические показатели не оказывает влияние геометрическая форма и способ запитки, то на вертикальные антенны это оказывает влияние.

Такая антенна функционирует на трёх диапазонах: десять, двенадцать и пятнадцать метров. Перестраивается с помощью конденсатора, который должен быть надежно защищен от атмосферной влаги. Питание осуществляется любым кабелем 50-75 Ом, потому как согласующее устройство обеспечивает трансформацию выходного сопротивления передатчика в сопротивление антенны.

Укороченная дипольная антенна

Существуют укороченные антенны на 7 МГц, длина плеч которых составляет всего около трёх метров. Конструктив антенны включает в себя:

  • два плеча порядка трех метров;
  • изоляторы на краях;
  • веревочки для оттяжек;
  • катушка удлинительная;
  • небольшой шнур;
  • центральный узел.

Длина намотки катушки составляет 85 миллиметров и 140 намотанных вплотную витков. Точность здесь не так важна. То есть если витков будет больше, то это можно компенсировать длиной плеча антенны. Можно укорачивать и длину намотки, но это более сложно, придётся распаивать концы крепления.

Длина от края намотки катушки до центрального узла составляет порядка 40 сантиметров. В любом случае после изготовления антенну придётся настраивать подбором длины.

Вертикальная кв антенна своими руками

Как смастерить самому? Взять ненужную (или купить) недорогую удочку из карбона, 20-40-80. Наклеить на нее с одной стороны бумажную полоску с разметками точек. В отмеченные места вставить клипсы для подключения перемычек и шунтирования ненужной катушки. Таким образом, антенна будет переключаться с диапазона на диапазон. В заштрихованных областях будут намотаны укорачивающая катушка и указанное количество витков. В саму «удочку» вставляется штырь.

Также понадобятся материалы:

  • медный обмоточный провод используется диаметром 0,75 мм;
  • провод для противовеса диаметром 1,5 мм.

Штыревая антенна обязательно должна работать с противовесом, иначе она не будет эффективной. Итак, при наличии всех этих материалов останется только намотать проволочный бандаж на удилище так, чтобы получилась сначала большая катушка, затем меньше и ещё меньше. Процесс переключения диапазонов антенны: от 80 м до 2 м.

Выбор первого кв трансивера

При выборе коротковолнового трансивера начинающего радиолюбителя в первую очередь надо уделить внимание тому, как его купить, чтобы не ошибиться. Какие тут есть особенности? Существуют необычные узкоспециализированные радиостанции – это не подходит для первого трансивера. Не нужно выбирать носимые радиостанции, предназначенные для работы на ходу со штыревой антенной.

Такая радиостанция не удобна для того, чтобы:

  • ее использовать в качестве радиолюбительского обычного аппарата,
  • начать проводить связь;
  • научиться ориентироваться в радиолюбительском коротковолновом эфире.

Также есть радиостанции, которые программируются исключительно с компьютера.

Простейшие самодельные антенны

Для радиосвязи в полях бывает нужно связаться не только на расстояния в сотни километров, но и на небольшие расстояния с маленьких носимых радиостанций. Не всегда возможна устойчивая связь даже на небольшие расстояния, так как рельеф местности и крупные постройки могут мешать распространению сигнала. В таких случаях может помочь подъём антенны на небольшую высоту.

Высота даже такая, как 5-6 метров, может дать значительную прибавку в сигнале. И если с земли была слышимость очень плохая, то при подъёме антенны на несколько метров ситуация может значительно улучшиться. Конечно, установкой десятиметровой мачты и многоэлементной антенны однозначно улучшится и дальняя связь. Но мачты и антенны есть не всегда. В таких случаях выручают самодельные антенны, поднятые на высоту, например, на ветку дерева.

Немного слов о коротковолновиках

Коротковолновиками являются специалисты, обладающие знаниями в области электротехники, радиотехники, радиосвязи. К тому же они владеют квалификацией радиста, способны вести радиосвязь даже в таких условиях, в которых не всегда соглашаются работать профессионалы-радисты, а в случае необходимости способные быстро найти и устранить неисправность в своей радиостанции.

В основе работы коротковолновиков лежит коротковолновое любительство – установление двусторонней радиосвязи на коротких волнах. Самыми юными представителями коротковолновиков являются школьники.

Антенны мобильных телефонов

Ещё десяток лет тому назад из мобильных телефонов торчали небольшие пипочки. Сегодня ничего такого не наблюдается. Почему? Так как базовых станций в то время было мало, то повысить дальность связи можно было, только увеличив эффективность антенн. В общем, наличие полноразмерной антенны мобильного телефона в те времена повышало дальность его работы.

Сегодня, когда базовые станции натыканы через каждые сто метров, такой необходимости нет. К тому же с ростом поколений мобильной связи есть тенденция увеличения частоты. Вч диапазоны мобильной связи расширились до 2500 МГц. Это уже длина волны всего 12 см. И в корпус антенны можно вставить не укороченную антенну, а многоэлементную.

Без антенн в современной жизни не обойтись. Их разнообразие такое огромное, что о них можно рассказывать очень долго. Например, существуют рупорные, параболические, логопериодические, направленные антенны.

Видео