Тело поверхность многогранники и виды. Правильные многогранники. Определение правильного многогранника

Цель урока:

  1. Ввести понятие правильных многогранников.
  2. Рассмотреть виды правильных многогранников.
  3. Решение задач.
  4. Привить интерес к предмету, научить видеть прекрасное в геометрических телах, развитие пространственного воображения.
  5. Межпредметные связи.

Наглядность: таблицы, модели.

Ход урока

I. Организационный момент. Сообщить тему урока, сформулировать цели урока.

II. Изучение нового материала/

Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести “Правильные многогранники”. Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. И тогда урок геометрии становится своеобразным исследованием неожиданных сторон привычного школьного предмета.

Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. “Правильных многогранников вызывающе мало, – написал когда-то Л. Кэролл, – но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук”.

Определение правильного многогранника.

Многогранник называется правильным, если:

  1. он выпуклый;
  2. все его грани – равные друг другу правильные многоугольники;
  3. в каждой его вершине сходится одинаковое число ребер;
  4. все его двугранные углы равны.

Теорема: Существует пять различных (с точностью до подобия) типов правильных многогранников: правильный тетраэдр, правильный гексаэдр (куб), правильный октаэдр, правильный додекаэдр и правильный икосаэдр.

Таблица 1. Некоторые свойства правильных многогранников приведены в следующей таблице.

Вид грани Плоский угол при вершине Вид многогранного угла при вершине Сумма плоских углов при вершине В Р Г Название многогранника
Правильный треугольник 60º 3-гранный 180º 4 6 4 Правильный тетраэдр
Правильный треугольник 60º 4-гранный 240º 6 12 8 Правильный октаэдр
Правильный треугольник 60º 5-гранный 300º 12 30 20 Правильный икосаэдр
Квадрат 90º 3-гранный 270º 8 12 6 Правильный гексаэдр (куб)
Правильный треугольник 108º 3-гранный 324º 20 30 12 Правильный додекаэдр

Рассмотрим виды многогранников:

Правильный тетраэдр

<Рис. 1>

Правильный октаэдр


<Рис. 2>

Правильный икосаэдр


<Рис. 3>

Правильный гексаэдр (куб)


<Рис. 4>

Правильный додекаэдр


<Рис. 5>

Таблица 2. Формулы для нахождения объемов правильных многогранников.

Вид многогранника Объем многогранника
Правильный тетраэдр
Правильный октаэдр
Правильный икосаэдр
Правильный гексаэдр (куб)
Правильный додекаэдр

“Платоновые тела”.

Куб и октаэдр дуальны, т.е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны додекаэдр и икосаэдр. Тетраэдр дуален сам себе. Правильный додекаэдр получается из куба построением “крыш” на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру. Так получаются из куба все остальные правильные многогранники. Сам факт существования всего пяти действительно правильных многогранников удивителен – ведь правильных многоугольников на плоскости бесконечно много!

Все правильные многогранники были известны еще в Древней Греции, и им посвящена заключительная, XII книга знаменитых начал Евклида. Эти многогранники часто называют так же платоновыми телами в идеалистической картине мира, данной великим древнегреческим мыслителем Платоном. Четыре из них олицетворяли четыре стихии: тетраэдр-огонь, куб-землю, икосаэдр-воду и октаэдр-воздух; пятый же многогранник, додекаэдр, символизировал все мироздание. Его по латыни стали называть quinta essentia (“пятая сущность”).

Придумать правильный тетраэдр, куб, октаэдр, по-видимому, было не трудно, тем более что эти формы имеют природные кристаллы, например: куб – монокристалл поваренной соли (NaCl), октаэдр – монокристалл алюмокалиевых квасцов ((KAlSO 4) 2 ·l2H 2 O). Существует предположение, что форму додекаэдра древние греки получили, рассматривая кристаллы пирита (сернистого колчедана FeS). Имея же додекаэдр нетрудно построить и икосаэдр: его вершинами будут центры 12 граней додекаэдра.

Где еще можно увидеть эти удивительные тела?

В очень красивой книге немецкого биолога начала нашего века Э. Геккеля “Красота форм в природе” можно прочитать такие строки: “Природа вскармливает на своем лоне неисчерпаемое количество удивительных созданий, которые по красоте и разнообразию далеко превосходят все созданные искусством человека формы”. Создания природы, приведенные в этой книге, красивы и симметричны. Это неотделимое свойство природной гармонии. Но здесь видны одноклеточные организмы – феодарии, форма которых точно передает икосаэдр. Чем же вызвана эта природная геометризация? Может быть, тем, что из всех многогранников с таким же количеством граней именно икосаэдр имеет наибольший объем и наименьшую площадь поверхности. Это геометрическое свойство помогает морскому микроорганизму преодолевать давление водной толщи.

Интересно и то, что именно икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет по теми же углами, что и поток атомов на вирус. Оказалось, что свойства, о которых говорилось выше, позволяют экономить генетическую информацию. Правильные многогранники – самые выгодные фигуры. И природа этим широко пользуется. Правильные многогранники определяют форму кристаллических решеток некоторых химических веществ. Следующая задача проиллюстрирует эту мысль.

Задача. Модель молекулы метана CH 4 имеет форму правильного тетраэдра, в четырех вершинах которого находятся атомы водорода, а в центре – атом углерода. Определить угол связи между двумя CH связями.


<Рис. 6>

Решение. Так как правильный тетраэдр имеет шесть равных ребер, то можно подобрать такой куб, чтобы диагонали его граней были ребрами правильного тетраэдра. Центр куба является и центром тетраэдра, ведь четыре вершины тетраэдра являются и вершинами куба, а описываемая около них сфера однозначно определяется четырьмя точками, не лежащими в одной плоскости.

Треугольник АОС – равнобедренный. Отсюда а – сторона куба, d – длина диагонали боковой грани или ребро тетраэдра. Итак, а = 54, 73561 0 и j = 109,47 0

Задача. В кубе из одной вершины (D) проведены диагонали граней DA, DB и DC и концы их соединены прямыми. Доказать, что многогранник DABC, образованный четырьмя плоскостями, проходящими через эти прямые, – правильный тетраэдр.


<Рис. 7>

Задача. Ребро куба равно a. Вычислить поверхность вписанного в него правильного октаэдра. Найти ее отношение к поверхности вписанного в тот же куб правильного тетраэдра.


<Рис. 8>

Обобщение понятия многогранника.

Многогранник – совокупность конечного числа плоских многоугольников такая, что:

  1. каждая сторона любого из многоугольников есть одновременно сторона другого (но только одного (называемого смежным с первым) по этой стороне);
  2. от любого из многоугольников составляющих многогранник, можно дойти до любого из них, переходя к смежному с ним, а от этого, в свою очередь, к смежному с ним и т.д.

Эти многоугольники называются гранями, их стороны – ребрами, а их вершины – вершинами многогранника.

Приведенное определение многогранника получает различный смысл в зависимости от того, как определить многоугольник:

– если под многоугольником понимают плоские замкнуты ломаные (хотя бы и само пересекающиеся), то приходят к данному определению многогранника;

– если под многоугольником понимать часть плоскости, ограниченной ломанными, то с этой точки зрения под многогранником понимают поверхность, составленную из многоугольных кусков. Если эта поверхность сама себя не пересекает, то она есть полная поверхность некоторого геометрического тела, которое так же называют многогранником. От сюда возникает третья точка зрения на многогранники как на геометрические тела, при чем допускается также существование у этих тел “дырок”, ограниченных конечным числом плоских граней.

Простейшими примерами многогранников являются призмы и пирамиды.

Многогранник называется n- угольной пирамидой, если он имеет одной своей гранью (основанием) какой-либо n- угольник, а остальные грани – треугольники с общей вершиной, не лежащей в плоскости основания. Треугольная пирамида называется также тетраэдром.

Многогранник называется n -угольной призмой, если он имеет двумя своими гранями (основаниями) равные n -угольники (не лежащие в одной плоскости), получающиеся друг из друга параллельным переносом, а остальные грани – параллелограммы, противоположными сторонами которых являются соответственные стороны оснований.

Для всякого многогранника нулевого рода эйлерова характеристика (число вершин минус число ребер плюс число граней) равна двум; символически: В – Р + Г = 2 (теорема Эйлера). Для многогранника рода p справедливо соотношение В – Р + Г = 2 – 2p .

Выпуклым многогранником называется такой многогранник, который лежит по одну сторону от плоскости любой его грани. Наиболее важны следующие выпуклые многогранники:


<Рис. 9>

  1. правильные многогранники (тела Платона) – такие выпуклые многогранники, все грани которых одинаковые правильные многоугольники и все многогранные углы при вершинах правильные и равные <Рис. 9, № 1-5>;
  2. изогоны и изоэдры – выпуклые многогранники, все многогранные углы которых равны (изогоны) или равные все грани (изоэдры); причем группа поворотов (с отражениями) изогона (изоэдра) вокруг центра тяжести переводит любую его вершину (грань) в любую другую его вершину (грань). Полученные так многогранники называются полуправильными многогранниками (телами Архимеда) <Рис. 9, № 10-25>;
  3. параллелоэдры (выпуклые) – многогранники, рассматриваемые как тела, параллельным пересечением которых можно заполнить все бесконечное пространство так, чтобы они не входили друг в друга и не оставляли пустот между собой, т.е. образовывали разбиение пространства <Рис. 9, № 26-30>;
  4. Если под многоугольником понимать плоские замкнутые ломаные (хотя бы и самопересекающиеся), то можно указать еще 4 невыпуклых (звездчатых) правильных многогранников (тела Пуансо). В этих многогранниках либо грани пересекают друг друга, либо грани – самопересекающиеся многоугольники <Рис. 9, № 6-9>.

III. Задание на дом.

IV. Решение задач № 279, № 281.

V. Подведение итогов.

Список использованной литературы:

  1. “Математическая энциклопедия”, под редакцией И. М. Виноградова, издательство “Советская энциклопедия”, Москва, 1985 г. Том 4 стр. 552–553 Том 3, стр. 708–711.
  2. “Малая математическая энциклопедия”, Э. Фрид, И. Пастор, И. Рейман и др. издательство Академии наук Венгрии, Будапешт, 1976 г. Стр. 264–267.
  3. “Сборник задач по математики для поступающих в ВУЗы” в двух книгах, под редакцией М.И. Сканави, книга 2 – Геометрия, изд-во “Высшая школа”, Москва, 1998 г. Стр. 45–50.
  4. “Практические занятия по математике: Учебное пособие для техникумов”, издательство “Высшая школа”, Москва, 1979 г. Стр. 388–395, стр. 405.
  5. “Повторяем математику” издание 2–6, доп., Учебное пособие для поступающих в ВУЗы, издательство “Высшая школа”, Москва, 1974 г. Стр. 446–447.
  6. Энциклопедический словарь юного математика, А. П. Савин, издательство “Педагогика”, Москва, 1989 г. Стр. 197–199.
  7. “Энциклопедия для детей. Т.П. Математика”, главный редактор М. Д. Аксенова ; метод, и отв. редактор В. А. Володин, издательство “Аванта+”, Москва, 2003 г. Стр. 338–340.
  8. Геометрия, 10–11: Учебник для общеобразовательных учреждений/ Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. – 10-е издание – М.: Просвещение, 2001. Стр. 68–71.
  9. “Квант” № 9, 11 – 1983, № 12 – 1987, № 11, 12 – 1988, № 6, 7, 8 – 1989. Научно-популярный физико-математический журнал Академии наук СССР и Академии педагогических наук СССР. Издательство “Наука”. Главная редакция физико-математической литературы. Стр. 5–9, 6–12, 7–9, 10, 4–8, 13, 16, 58.
  10. Решение задач повышенной сложности по геометрии: 11-й класс – М.: АРКТИ, 2002. Стр. 9, 19–20.

Цель урока:

  1. Ввести понятие правильных многогранников.
  2. Рассмотреть виды правильных многогранников.
  3. Решение задач.
  4. Привить интерес к предмету, научить видеть прекрасное в геометрических телах, развитие пространственного воображения.
  5. Межпредметные связи.

Наглядность: таблицы, модели.

Ход урока

I. Организационный момент. Сообщить тему урока, сформулировать цели урока.

II. Изучение нового материала/

Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести “Правильные многогранники”. Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. И тогда урок геометрии становится своеобразным исследованием неожиданных сторон привычного школьного предмета.

Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. “Правильных многогранников вызывающе мало, – написал когда-то Л. Кэролл, – но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук”.

Определение правильного многогранника.

Многогранник называется правильным, если:

  1. он выпуклый;
  2. все его грани – равные друг другу правильные многоугольники;
  3. в каждой его вершине сходится одинаковое число ребер;
  4. все его двугранные углы равны.

Теорема: Существует пять различных (с точностью до подобия) типов правильных многогранников: правильный тетраэдр, правильный гексаэдр (куб), правильный октаэдр, правильный додекаэдр и правильный икосаэдр.

Таблица 1. Некоторые свойства правильных многогранников приведены в следующей таблице.

Вид грани Плоский угол при вершине Вид многогранного угла при вершине Сумма плоских углов при вершине В Р Г Название многогранника
Правильный треугольник 60º 3-гранный 180º 4 6 4 Правильный тетраэдр
Правильный треугольник 60º 4-гранный 240º 6 12 8 Правильный октаэдр
Правильный треугольник 60º 5-гранный 300º 12 30 20 Правильный икосаэдр
Квадрат 90º 3-гранный 270º 8 12 6 Правильный гексаэдр (куб)
Правильный треугольник 108º 3-гранный 324º 20 30 12 Правильный додекаэдр

Рассмотрим виды многогранников:

Правильный тетраэдр

<Рис. 1>

Правильный октаэдр


<Рис. 2>

Правильный икосаэдр


<Рис. 3>

Правильный гексаэдр (куб)


<Рис. 4>

Правильный додекаэдр


<Рис. 5>

Таблица 2. Формулы для нахождения объемов правильных многогранников.

Вид многогранника Объем многогранника
Правильный тетраэдр
Правильный октаэдр
Правильный икосаэдр
Правильный гексаэдр (куб)
Правильный додекаэдр

“Платоновые тела”.

Куб и октаэдр дуальны, т.е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны додекаэдр и икосаэдр. Тетраэдр дуален сам себе. Правильный додекаэдр получается из куба построением “крыш” на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру. Так получаются из куба все остальные правильные многогранники. Сам факт существования всего пяти действительно правильных многогранников удивителен – ведь правильных многоугольников на плоскости бесконечно много!

Все правильные многогранники были известны еще в Древней Греции, и им посвящена заключительная, XII книга знаменитых начал Евклида. Эти многогранники часто называют так же платоновыми телами в идеалистической картине мира, данной великим древнегреческим мыслителем Платоном. Четыре из них олицетворяли четыре стихии: тетраэдр-огонь, куб-землю, икосаэдр-воду и октаэдр-воздух; пятый же многогранник, додекаэдр, символизировал все мироздание. Его по латыни стали называть quinta essentia (“пятая сущность”).

Придумать правильный тетраэдр, куб, октаэдр, по-видимому, было не трудно, тем более что эти формы имеют природные кристаллы, например: куб – монокристалл поваренной соли (NaCl), октаэдр – монокристалл алюмокалиевых квасцов ((KAlSO 4) 2 ·l2H 2 O). Существует предположение, что форму додекаэдра древние греки получили, рассматривая кристаллы пирита (сернистого колчедана FeS). Имея же додекаэдр нетрудно построить и икосаэдр: его вершинами будут центры 12 граней додекаэдра.

Где еще можно увидеть эти удивительные тела?

В очень красивой книге немецкого биолога начала нашего века Э. Геккеля “Красота форм в природе” можно прочитать такие строки: “Природа вскармливает на своем лоне неисчерпаемое количество удивительных созданий, которые по красоте и разнообразию далеко превосходят все созданные искусством человека формы”. Создания природы, приведенные в этой книге, красивы и симметричны. Это неотделимое свойство природной гармонии. Но здесь видны одноклеточные организмы – феодарии, форма которых точно передает икосаэдр. Чем же вызвана эта природная геометризация? Может быть, тем, что из всех многогранников с таким же количеством граней именно икосаэдр имеет наибольший объем и наименьшую площадь поверхности. Это геометрическое свойство помогает морскому микроорганизму преодолевать давление водной толщи.

Интересно и то, что именно икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет по теми же углами, что и поток атомов на вирус. Оказалось, что свойства, о которых говорилось выше, позволяют экономить генетическую информацию. Правильные многогранники – самые выгодные фигуры. И природа этим широко пользуется. Правильные многогранники определяют форму кристаллических решеток некоторых химических веществ. Следующая задача проиллюстрирует эту мысль.

Задача. Модель молекулы метана CH 4 имеет форму правильного тетраэдра, в четырех вершинах которого находятся атомы водорода, а в центре – атом углерода. Определить угол связи между двумя CH связями.


<Рис. 6>

Решение. Так как правильный тетраэдр имеет шесть равных ребер, то можно подобрать такой куб, чтобы диагонали его граней были ребрами правильного тетраэдра. Центр куба является и центром тетраэдра, ведь четыре вершины тетраэдра являются и вершинами куба, а описываемая около них сфера однозначно определяется четырьмя точками, не лежащими в одной плоскости.

Треугольник АОС – равнобедренный. Отсюда а – сторона куба, d – длина диагонали боковой грани или ребро тетраэдра. Итак, а = 54, 73561 0 и j = 109,47 0

Задача. В кубе из одной вершины (D) проведены диагонали граней DA, DB и DC и концы их соединены прямыми. Доказать, что многогранник DABC, образованный четырьмя плоскостями, проходящими через эти прямые, – правильный тетраэдр.


<Рис. 7>

Задача. Ребро куба равно a. Вычислить поверхность вписанного в него правильного октаэдра. Найти ее отношение к поверхности вписанного в тот же куб правильного тетраэдра.


<Рис. 8>

Обобщение понятия многогранника.

Многогранник – совокупность конечного числа плоских многоугольников такая, что:

  1. каждая сторона любого из многоугольников есть одновременно сторона другого (но только одного (называемого смежным с первым) по этой стороне);
  2. от любого из многоугольников составляющих многогранник, можно дойти до любого из них, переходя к смежному с ним, а от этого, в свою очередь, к смежному с ним и т.д.

Эти многоугольники называются гранями, их стороны – ребрами, а их вершины – вершинами многогранника.

Приведенное определение многогранника получает различный смысл в зависимости от того, как определить многоугольник:

– если под многоугольником понимают плоские замкнуты ломаные (хотя бы и само пересекающиеся), то приходят к данному определению многогранника;

– если под многоугольником понимать часть плоскости, ограниченной ломанными, то с этой точки зрения под многогранником понимают поверхность, составленную из многоугольных кусков. Если эта поверхность сама себя не пересекает, то она есть полная поверхность некоторого геометрического тела, которое так же называют многогранником. От сюда возникает третья точка зрения на многогранники как на геометрические тела, при чем допускается также существование у этих тел “дырок”, ограниченных конечным числом плоских граней.

Простейшими примерами многогранников являются призмы и пирамиды.

Многогранник называется n- угольной пирамидой, если он имеет одной своей гранью (основанием) какой-либо n- угольник, а остальные грани – треугольники с общей вершиной, не лежащей в плоскости основания. Треугольная пирамида называется также тетраэдром.

Многогранник называется n -угольной призмой, если он имеет двумя своими гранями (основаниями) равные n -угольники (не лежащие в одной плоскости), получающиеся друг из друга параллельным переносом, а остальные грани – параллелограммы, противоположными сторонами которых являются соответственные стороны оснований.

Для всякого многогранника нулевого рода эйлерова характеристика (число вершин минус число ребер плюс число граней) равна двум; символически: В – Р + Г = 2 (теорема Эйлера). Для многогранника рода p справедливо соотношение В – Р + Г = 2 – 2p .

Выпуклым многогранником называется такой многогранник, который лежит по одну сторону от плоскости любой его грани. Наиболее важны следующие выпуклые многогранники:


<Рис. 9>

  1. правильные многогранники (тела Платона) – такие выпуклые многогранники, все грани которых одинаковые правильные многоугольники и все многогранные углы при вершинах правильные и равные <Рис. 9, № 1-5>;
  2. изогоны и изоэдры – выпуклые многогранники, все многогранные углы которых равны (изогоны) или равные все грани (изоэдры); причем группа поворотов (с отражениями) изогона (изоэдра) вокруг центра тяжести переводит любую его вершину (грань) в любую другую его вершину (грань). Полученные так многогранники называются полуправильными многогранниками (телами Архимеда) <Рис. 9, № 10-25>;
  3. параллелоэдры (выпуклые) – многогранники, рассматриваемые как тела, параллельным пересечением которых можно заполнить все бесконечное пространство так, чтобы они не входили друг в друга и не оставляли пустот между собой, т.е. образовывали разбиение пространства <Рис. 9, № 26-30>;
  4. Если под многоугольником понимать плоские замкнутые ломаные (хотя бы и самопересекающиеся), то можно указать еще 4 невыпуклых (звездчатых) правильных многогранников (тела Пуансо). В этих многогранниках либо грани пересекают друг друга, либо грани – самопересекающиеся многоугольники <Рис. 9, № 6-9>.

III. Задание на дом.

IV. Решение задач № 279, № 281.

V. Подведение итогов.

Список использованной литературы:

  1. “Математическая энциклопедия”, под редакцией И. М. Виноградова, издательство “Советская энциклопедия”, Москва, 1985 г. Том 4 стр. 552–553 Том 3, стр. 708–711.
  2. “Малая математическая энциклопедия”, Э. Фрид, И. Пастор, И. Рейман и др. издательство Академии наук Венгрии, Будапешт, 1976 г. Стр. 264–267.
  3. “Сборник задач по математики для поступающих в ВУЗы” в двух книгах, под редакцией М.И. Сканави, книга 2 – Геометрия, изд-во “Высшая школа”, Москва, 1998 г. Стр. 45–50.
  4. “Практические занятия по математике: Учебное пособие для техникумов”, издательство “Высшая школа”, Москва, 1979 г. Стр. 388–395, стр. 405.
  5. “Повторяем математику” издание 2–6, доп., Учебное пособие для поступающих в ВУЗы, издательство “Высшая школа”, Москва, 1974 г. Стр. 446–447.
  6. Энциклопедический словарь юного математика, А. П. Савин, издательство “Педагогика”, Москва, 1989 г. Стр. 197–199.
  7. “Энциклопедия для детей. Т.П. Математика”, главный редактор М. Д. Аксенова ; метод, и отв. редактор В. А. Володин, издательство “Аванта+”, Москва, 2003 г. Стр. 338–340.
  8. Геометрия, 10–11: Учебник для общеобразовательных учреждений/ Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. – 10-е издание – М.: Просвещение, 2001. Стр. 68–71.
  9. “Квант” № 9, 11 – 1983, № 12 – 1987, № 11, 12 – 1988, № 6, 7, 8 – 1989. Научно-популярный физико-математический журнал Академии наук СССР и Академии педагогических наук СССР. Издательство “Наука”. Главная редакция физико-математической литературы. Стр. 5–9, 6–12, 7–9, 10, 4–8, 13, 16, 58.
  10. Решение задач повышенной сложности по геометрии: 11-й класс – М.: АРКТИ, 2002. Стр. 9, 19–20.

Куб, шар, пирамида, цилиндр, конус - геометрические тела. Среди них выделяют многогранники. Многогранником называют геометрическое тело, поверхность которого состоит из конечного числа многоугольников. Каждый из этих многоугольников называется гранью многогранника, стороны и вершины этих многоугольников - соответственно ребрами и вершинами многогранника.

Двугранные углы между соседними гранями, т.е. гранями, име­ющими общую сторону - ребро многогранника - являются так­же и двугранными умами многогранника. Углы многоугольников - граней выпуклого многоугольника - являются плоскими умами многогранника. Кроме плоских и двугранных углов у выпуклого многогранника имеются еще и многогранные углы. Эти углы образу­ют грани, имеющие общую вершину.

Среди многогранников различают призмы и пирамиды.

Призма - это многогранник, поверхность которого состоит из двух равных многоугольников и параллелограммов, имеющих об­щие стороны с каждым из оснований.

Два равных многоугольника называются основаниями ггризмьг, а параллелограммы - ее боковыми гранями. Боковые грани образуют боковую поверхность призмы. Ребра, не лежащие в основаниях, называются боковыми ребрами призмы.

Призму называют п-угольной, если ее основаниями являются я-угольники. На рис. 24.6 изображена четырехугольная призма АВСDА"В"С"D".

Призму называют прямой, если ее боковыми гранями являются прямоугольники (рис. 24.7).

Призму называют правильной , если она прямая, а ее основа­ния - правильные многоугольники.

Четырехугольную призму называют параллелепипедом , если ее основания - параллелограммы.

Параллелепипед называют прямоугольным, если все его грани - прямоугольники.

Диагональ параллелепипеда - это отрезок, соединяющий его противоположные вершины. У параллелепипеда четыре диаго­нали.

Доказано, что диагонали параллелепи­педа пересекаются в одной точке и делятся этой точкой пополам. Диагонали прямо­угольного параллелепипеда равны.

Пирамида - это многогранник, по­верхность которого состоит из много­угольника - основания пирамиды, и треугольников, имеющих общую верши­ну, называемых боковыми гранями пи­рамиды. Общая вершина этих треуголь­ников называется вершиной пирамиды, ребра, выходящие из вер­шины, - боковыми ребрами пирамиды.

Перпендикуляр, опущенный из вершины пирамиды на основа­ние, а также длина этого перпендикуляра называется высотой пи­рамиды.

Простейшая пирамида - треугольная или тетраэдр (рис. 24.8). Особенность треугольной пирамиды состоит в том, что любую грань можно рассматривать как основание.

Пирамиду называют правильной, если в основании ее лежит правильный многоугольник, а все боковые ребра равны между собой.

Заметим, что следует различать правильный тетраэдр (т.е. тетра­эдр, у которого все ребра равны между собой) и правильную тре­угольную пирамиду (в ее основании лежит правильный треуголь­ник, а боковые ребра равны между собой, но их длина может от­личаться от длины стороны треугольника, который является ос­нованием призмы).

Различают выпуюше и невыпуклые многогранники. Определить вы­пуклый многогранник можно, если воспользоваться понятием вы­пуклого геометрического тела: многогранник называют выпуклым. если он является выпуклой фигурой, т.е. вместе с любыми двумя своими точками целиком содержит и соединяющий их отрезок.

Можно определить выпуклый многогранник иначе: многогран­ник называют выпуклым, если он полностью лежит по одну сторо­ну от каждого из ограничивающих его многоугольников.

Данные определения равносильны. Доказательство этого факта не приво­дим.

Все многогранники, которые до сих пор рассматривались, были выпуклыми (куб, параллелепипед, призма, пирамида и др.). Многогранник, изображенный на рис. 24.9, выпуклым не является.

Доказано, что в выпуклом многогран­нике все грани являются выпуклыми многоугольниками.

Рассмотрим несколько выпуклых многогранников (таблица 24.1)

Из этой таблицы следует, что для всех рассмотренных выпук­лых многогранников имеет место равенство В - Р + Г = 2. Оказа­лось, что оно справедливо и для любого выпуклого многогранни­ка. Впервые это свойство было доказано Л.Эйлером и получило название теоремы Эйлера.

Выпуклый многогранник называют правильным, если его гра­нями являются равные правильные многоугольники и в каждой вершине сходится одинаковое число граней.

Используя свойство выпуклого многогранного угла, можно до­казать, что различных видов правильных многогранников существу­ет не более пяти.

Действительно, если фан и многогранника - правильные тре­угольники, то в одной вершине их может сходиться 3, 4 и 5, так как 60" 3 < 360°, 60° - 4 < 360°, 60° 5 < 360°, но 60° 6 = 360°.

Если в каждой вершине многофанника сходится три правиль­ных треугольника, то получаем правшш/ый тетраэдр, что в пере­воде с феческого означает «четырехгранник» (рис. 24.10, а).

Если в каждой вершине многогранника сходится четыре пра­вильных треугольника, то получаем октаэдр (рис. 24.10, в). Его поверхность состоит из восьми правильных треугольников.

Если в каждой вершине многогранника сходится пято правиль­ных треугольников, то получаем икосаэдр (рис. 24.10, г). Его поверх­ность состоит из двадцати правильных треугольников.

Если грани многофанника - квадраты, то в одной вершине их может сходиться только три, так как 90° 3 < 360°, но 90° 4 = 360°. Этому условию удовлетворяет только куб. Куб имеет шесть фаней и поэтому называется также гексаэдром (рис. 24.10, б).

Если граани многофанника - правильные пятиугольники, то в одной вершине их может сходиться только фи, так как 108° 3 < 360°, пятиугольники и в каждой вершине сходится три грани, называется додекаэдром (рис. 24.10, д). Его поверхность состоит из двенадцати правильных пятиугольников.

Шестиугольными и более грани многогранника не могут быть, так как даже для шестиугольника 120° 3 = 360°.

В геометрии доказано, что в трехмерном евклидовом простран­стве существует ровно пять различных видов правильных много­гранников’.

Чтобы изготовить модель многогранника, нужно сделать его развертку (точнее развертку его поверхности).

Развертка многогранника - это фигура на плоскости, которая получается, если поверхность многогранника разрезать но некото рым ребрам и развернуть ее так, чтобы все многоугольники, вхо­дящие в эту поверхность, лежали в одной плоскости.

Отметим, что многогранник может иметь несколько различных разверток в зависимости от того, какие ребра мы разрезали. На рисунке 24.11 показаны фиг"уры, которые являются различными развертками правильной четырехугольной пирамиды, т.е. пирами­ды, в основании которой лежит квадрат, а все боковые ребра рав­ны между собой.

Чтобы фигура на плоскости была разверткой выпуклого много­гранника, она должна удовлетворять ряду требований, связанных с особенностями многогранника. Например, фигуры на рис. 24.12 не являются развертками правильной четырехугольной пирамиды: в фигуре, изображенной на рис. 24.12, а, в вершине М сходятся четыре грани, чего не может быть в правильной четырехугольной пирамиде; а в фигуре, изображенной на рис. 24.12, б, боковые ребра А В и ВС не равны.

Вообще, развертку многогранника можно получить путем раз­резания его поверхности не только по ребрам. Пример такой раз­вертки куба приведен на рис. 24.13. Поэтому более точно развертку многогранника можно определить как плоский многоугольник, из которого может быть сделана поверхность этого многогранника без перекрытий.

Тела вращения

Телом вращения называют тело, полученное в результате вра­щения некоторой фигуры (обычно плоской) вокруг прямой. Эту прямую называют осью вращения.

Цилиндр - эго тело, которое получается в результате вращения прямоугольника вокруг одной из его сторон. При этом указанная сто­рона является осью цилиндра. На рис. 24.14 изображен цилиндр с осью ОО’, полученный в результате вращения прямоугольника АА"О"О вокруг прямой ОО". Точки О и О" - центры оснований цилиндра.

Цилиндр, который получается в результате вращения прямо­угольника вокруг одной из его сторон, называют прямым круго­вым цилиндром, так как его основаниями являются два равных круга, расположенных в параллельных плоскостях так, что отре­зок, соединяющий центры кругов, перпендикулярен этим плос­костям. Боковую поверхность цилиндра образуют отрезки, равные стороне прямоугольника, параллельной оси цилиндра.

Разверткой боковой поверхности пря­мого кругового цилиндра, если ее раз­резать по образующей, является прямо­угольник, одна сторона которого равна длине образующей, а другая - длине ок­ружности основания.

Конус - это тело, которое получает­ся в результате вращения прямоугольного треугольника вокруг одного из катетов.

При этом указанный катет неподвижен и называется осью конуса. На рис. 24.15 изображен конус с осью SO, получен­ный в результате вращения прямоуголь­ного треугольника SOA с прямым уг­лом О вокруг катета S0. Точку S называют вершиной конуса, ОА - радиусом его основания.

Конус, который получается в результате вращения прямоуголь­ного треугольника вокруг одного из его катетов, называют пря­мым круговым конусом, гак как его основанием является круг, а вершина проектируется в центр этого круга. Боковую поверхность конуса образуют отрезки, равные гипотенузе треугольника, при вращении которого образуется конус.

Если боковую поверхность конуса разрезать по образующей, то ее можно «развернуть» на плоскость. Разверткой боковой поверх­ности прямого кругового конуса является круговой сектор с ради­усом, равным длине образующей.

При пересечении цилиндра, конуса или любого другого тела вращения плоскостью, содержагцей ось вращения, получается осевое сечение. Осевое сечение цилиндра - прямоугольник, осевое сече­ние конуса - равнобедренный треугольник.

Шар - это тело, которое получается в результате вращения полукруг а вокруг его диаметра. На рис. 24.16 изображен шар, получен­ный в результате вращения полукруга вокруг диаметра АА". Точку О называют центром шара, а радиус круга является радиусом шара.

Поверхность шара называют сферой. Сферу развернуть на плос­кость нельзя.

Любое сечение шара плоскостью есть круг. Радиус сечения шара будет наибольшим, если плоскость проходит через центр шара. Поэтому сечение шара плоскостью, проходящей через центр шара, называют большим кругом шара, а окружность, его ограничиваю­щая, - большой окружностью.

ИЗОБРАЖЕНИЕ ГЕОМЕТРИЧЕСКИХ ТЕЛ НА ПЛОСКОСТИ

В отличие от плоских фигур геометрические тела невозможно точно изобразить, например, на листе бумаги. Однако с помощью чертежей на плоскости можно получить достаточно наглядное изоб­ражение пространственных фигур. Для этого используются специ­альные способы изображения таких фигур на плоскости. Одним из них является параллельное проектирование.

Пусть даны плоскость а и пересекающая се прямая а. Возьмем в пространстве произвольную точку Л", не принадлежащую пря­мой а, и проведем через X прямую а", параллельную прямой а (рис. 24.17). Прямая а" пересекает плоскость в некоторой точке X", которая называется параллельной проекцией точки X на плос­кость а.

Если точка А"лежит на прямой а, то се параллельной проекци­ей X" является точка, в которой прямая а пересекает плоскость а.

Если точка X принадлежит плоскости а, то точка X" совпадает с точкой X.

Таким образом, если заданы плоскость а и пересекающая ее прямая а. то каждой точке X пространства можно поставить в соот­ветствие единственную точку А" - параллельную проекцию точки X на плоскость а (при проектировании параллельно прямой а). Плос­кость а называется плоскостью проекций. О прямой а говорят, что она залает направление проектирования - ггри замене прямой а любой другой параллельной ей прямой результат проектирования не изменится. Все прямые, параллельные прямой а, задаюз одно и то же направ­ление проектирования и называются вместе с прямой а проектирующими прямыми.

Проекцией фигуры F называют мно­жество F‘ проекцией всех се точек. Ото­бражение, сопоставляющее каждой точ­ке X фигуры F "ее параллельную проек­цию - точку X" фигуры F", называется параллельным проектированием фигуры F (рис. 24.18).

Параллельной проекцией реального предмета является его тень, падающая на плоскую поверхность при солнечном освещении, поскольку солнечные лучи можно считать параллельными.

Параллельное проектирование обладает рядом свойств, знание которых необходимо при изображении геометрических тел на плоскости. Сформулируем основные, не приводя их доказательства.

Теорема 24.1. При параллельном проектировании для прямых, не параллельных направлению проектирования, и для лежащих на них отрезков выполняются следующие свойства:

1) проекция прямой есть прямая, а проекция отрезка - отрезок;

2) проекции параллельных прямых параллельны или совпадают;

3) отношение длин проекций отрезков, лежащих на одной прямой или на параллельных прямых, равно отношению длин самих отрезков.

Из этой теоремы вытекает следствие: при параллельном про­ектировании середина отрезка проектируется в середину его про­екции.

При изображении геометрических тел на плоскости необходи­мо следить за выполнением указанных свойств. В остальном оно может быть произвольным. Так, углы и отношения длин непарал­лельных отрезков могут изменяться произвольно, т.е., например, треугольник при параллельном проектировании изображается про­извольным треугольником. Но если треугольник равносторонний, то па проекции его медианы должны соединять вершину треуголь­ника с серединой противоположной стороны.

И еще одно требование необходимо соблюдать при изображе­нии пространственных тел на плоскости - способствовать созда­нию верного представления о них.

Изобразим, например, наклонную призму, основаниями кото­рой являются квадраты.

Построим сначала нижнее основание призмы (можно начинать и с верхнего). По правилам параллельного проектирования огго изобразится произвольным параллелограммом АВСD (рис. 24.19, а). Так как ребра призмы параллельны, строим параллельные пря­мые, проходящие через вершины построенного параллелограмма и откладываем на них равные отрезки АА", ВВ’, СС", DD", длина которых произвольна. Соединив последовательно точки А", В", С", D", получим четырехугольник А"В"С"D", изображающий верхнее основание призмы. Нетрудно доказать, что А"В"С"D" - паралле­лограмм, равный параллелограмму АВСD и, следовательно, мы имеем изображение призмы, основаниями которой являются рав­ные квадраты, а остальные грани - параллелограммы.

Если нужно изобразить прямую призму, основаниями которой являются квадраты, то показать, что боковые ребра этой призмы перпендикулярны основанию, можно так, как это сделано на рис. 24.19, б.

Кроме тог о, чертеж на рис. 24.19, б можно считать изображени­ем правильной призмы, так как ее основанием является квадрат - правильный четырехугольник, а также - прямоугольным парал­лелепипедом, поскольку все его грани - прямоугольники.

Выясним теперь, как изобразить на плоскости пирамиду.

Чтобы изобразить правильную пирамиду, сначала чертят пра­вильный многоугольник, лежащий в основании, и его центр - точку О. Затем проводят вертикальный отрезок OS, изображаю­щий высоту пирамиды. Заметим, что вертикальность отрезка OS обеспечивает большую наглядность рисунка. И наконец, точку S соединяют со всеми вершинами основания.

Изобразим, например, правильную пирамиду, основанием ко­торой является правильный шестиугольник.

Чтобы верно изобразить при параллельном проектировании правильный шестиугольник, надо обратить внимание на следующее. Пусть АВСDЕF - правильный шестиугольник. Тогда ВСЕF - прямоугольник (рис. 24.20) и, значит, при параллельном проектировании он изобра­зится произвольным параллелограммом В"С"Е"F". Так как диагональ АD проходит через точку О - центр многоугольника АВСDЕF и параллельна отрезкам. ВС и ЕF и АО= ОD, то при параллельном проектировании она изобразится произвольным от­резком А"D", проходящим через точку О" параллельно В"С" и Е"F" и, кроме того, А"О" = О"D".

Таким образом, последовательность построения основания ше­стиугольной пирамиды такова (рис. 24.21):

§ изображают произвольный параллелограмм В"С"Е"F" и его диагонали; отмечают точку их пересечения O";

§ через точку О" проводят прямую, параллельную В’С" (или Е"F’);

§ на построенной прямой выбирают произвольную точку А" и отмечают точку D" такую, что О"D" = А"О", и соединяют точку А" с точками В" и F ", а точку D" - с точками С" и Е".

Чтобы завершить построение пирамиды, проводят вертикаль­ный отрезок ОS (его длина выбирается произвольно) и соединя­ют точку S со всеми вершинами основания.

При параллельном проектировании шар изображается в виде круга того же радиуса. Чтобы сделать изображение шара более на­глядным, рисуют проекцию какой-нибудь большой окружности, плоскость которой не перпендикулярна плоскости проекции. Эта проекция будет эллипсом. Центр шара изобразится центром этого эллипса (рис. 24.22). Теперь можно найти соответствующие полюсы N и S при условии, что отрезок, их соединяющий, перпендикуля­рен плоскости экватора. Для этого через точку О проводим пря­мую, перпендикулярную АВ и отмечаем точку С - пересечение этой прямой с эллипсом; затем через точку С проводим касатель­ную к эллипсу, изображающему экватор. Доказано, что расстоя­ние СМ равно расстоянию от центра шара до каждого из полюсов. Поэтому, отложив отрезки ОN и OS, равные СМ, получим полю­сы N и S.

Рассмотрим один из приемов построения эллипса (он основан на преобразовании плоскости, которое называется сжатием): строят окружность с диаметром и проводят хорды, перпендикулярные диаметру (рис. 24.23). Половину каждой из хорд делят пополам и полученные точки соединяют плавной кривой. Эта кривая - эл­липс, большой осью которого является отрезок АВ, а центром - точка О.

Этот прием мЬжно использовать, изображая на плоскости пря­мой круговой цилиндр (рис. 24.24) и прямой круговой конус (рис. 24.25).

Прямой круговой конус изображают так. Сначала строят эл­липс - основание, затем находят центр основания - точку О и перпендикулярно проводят отрезок OS, который изображает вы­соту конуса. Из точки S проводят к эллипсу касательные (это дела­ют «на глаз», прикладывая линейку) и выделяют отрезки и SD этих прямых от точки S до точек касания С и D. Заметим, что отрезок СD не совпадает с диаметром основания конуса.