Способы расчета электрических полей. Принцип суперпозиции. Принцип суперпозиции электростатических Чем состоит принцип суперпозиции электрических полей

Если электрическое поле создано одним точечным зарядом q , то напряженность этого поля в какой-либо точке, отстоящей на расстоянии r от заряда равна, согласно закону Кулона:

и направлена вдоль прямой, соединяющей заряд с этой точкой. Таким образом, напряженность поля точечного заряда изменяется по мере удаления от заряда обратно пропорционально квадрату расстояния. При положительном заряде q поле направлено вдоль радиуса от заряда, при отрицательном q – вдоль радиуса по направлению к заряду. Посмотрим, чему равна напряженность поля, вызванного двумя точечными зарядами q 1 и q 2 . Пусть E 1 - напряженность поля в некоторой точке А , вызванная зарядом q 1 (когда заряд q 2 удален), а E 2 – напряженность в той же точке, вызванная зарядом q 2 (когда удален заряд q 1 ). Эти величины определяются по формулам:

Опыт показывает, что при совместном действии обоих зарядов напряженность поля в точке А может быть найдена по правилу параллелограмма:

если из точкиА отложить отрезки, изображающие по модулю и по направлению напряженности E 1 и E 2 , и на этих отрезках, как на сторонах построить параллелограмм, то напряженность E результирующего поля по модулю и направлению представится диагональю этого параллелограмма .

Правило сложения напряженностей полей аналогично правилу сложения сил в механике. Так же как и в механике, применимость правила параллелограмма означает независимость действия электрических полей. Последовательно применяя правило параллелограмма, можно вычислить напряженность поля не только двух. Но и какого угодно числа точечных зарядов.

Напряженность поля системы зарядов в данной точке равна геометрической (векторной) сумме напряженностей полей, созданных в этой точке каждым зарядом в отдельности:

Это утверждение называется принципом суперпозиции электростатических полей.

Справочная информация :

Линии напряженности – линии, касательные к которым в каждой точке поля совпадают с вектором напряженности электростатического поля в этой точке.

Линии напряженности не пересекаются.

Положительный заряд является источником линий напряженности; отрицательный заряд является стоком линий напряженности.

Модуль вектора напряженности пропорционален степени сгущения линий напряженности электростатического поля. Электрическое поле, векторы напряженности которого одинаковы во всех точках пространства, называется однородным.

Основная задача из раздела электростатики формулируется таким образом: по заданным распределению в пространстве и величине (источников поля) определить значение вектора напряженности Е во всех точках поля. Решение этой задачи возможно на основе такого понятия как принцип суперпозиции электрических полей (принцип независимости действия электрических полей): напряженность какого-либо электрического поля системы зарядов будет равняться геометрической сумме напряженности полей, которые создаются каждым из зарядов.

где Ei - напряженность в определенной точке пространства поля, создаваемого одним i-м зарядом системы, а n - суммарное число дискертных зарядов, которые входят в состав системы.

Пример решения задачи, в основу которого положен электрических полей. Так для определения напряженности электростатического поля, которое создается в вакууме неподвижными точечными зарядами q₁, q₂, …, qn, используем формулу:

E = (1/4πε₀) Σ (qi/r³i)ri

где ri - радиус-вектор, проведенный из точечного заряда qi в рассматриваемую точку поля.

Приведем еще один пример. Определение напряженности электростатического поля, которое создается в вакууме электрическим диполем.

Система из двух одинаковых по абсолютной величине и, при этом, противоположных по знаку зарядов q>0 и -q, расстояние I между которыми относительно мало в сравнении с расстоянием рассматриваемых точек. Плечом диполя будет называться вектор l, который направлен по оси диполя к положительному заряду от отрицательного и численно равен расстоянию I между ними. Вектор pₑ = ql - электрический момент диполя (дипольный электрический момент).

Напряженность Е поля диполя в любой точке:

Е = Е₊ + Е₋,

где Е₊ и Е₋ являются напряженностями полей электрических зарядов q и -q.

Таким образом, в точке А, которая расположена на оси диполя, напряженность поля диполя в вакууме будет равна

E = (1/4πε₀)(2pₑ/r³)

В точке В, которая расположена на перпендикуляре, восстановленном к оси диполя из его середины:

E = (1/4πε₀)(pₑ/r³)

В произвольной точке М, достаточно удаленной от диполя (r≥l), модуль напряженности его поля равен

E = (1/4πε₀)(pₑ/r³)√3cosϑ + 1

Кроме того, принцип суперпозиции электрических полей состоит из двух утверждений:

  1. Кулоновская сила взаимодействия двух зарядов не зависит от присутствия других заряженных тел.
  2. Предположим, что заряд q взаимодействует с системой зарядов q1, q2, . . . , qn. Если каждый из зарядов системы действует на заряд q с силой F₁, F₂, …, Fn соответственно, то результирующая сила F, приложенная к заряду q со стороны данной системы, равна векторной сумме отдельных сил:
    F = F₁ + F₂ + … + Fn.

Таким образом, принцип суперпозиции электрических полей позволяет прийти к одному важному утверждению.

Как известно, справедлив не только для точечных масс, но и для шаров со сферически-симметричным распределением массы (в частности, для шара и точечной массы); тогда r — расстояние между центрами шаров (от точечной массы до центра шара). Этот факт вытекает из математической формы закона всемирного тяготении и принципа суперпозиции.

Поскольку формула имеет ту же структуру, что и закон всемирного тяготения, и для кулоновской силы также выполнен принцип суперпозиции полей, можно сделать аналогичный вывод: по закону Кулона будут взаимодействовать два заряженных шара (точечный заряд с шаром) при условии, что шары имеют сферически-симметричное распределение заряда; величина r в таком случае будет расстоянием между центрами шаров (от точечного заряда до шара).

Именно поэтому напряжённость поля заряженного шара окажется вне шара такой же, как и у точечного заряда.

Но в электростатике, в отличие от гравитации, с таким понятием, как суперпозиция полей, надо быть осторожным. Например, при сближении положительно заряженных металлических шаров сферическая симметрия нарушится: положительные заряды, взаимно отталкиваясь, будут стремиться к наиболее удалённым друг от друга участкам шаров (центры положительных зарядов будут находиться дальше друг от друга, чем центры шаров). Поэтому сила отталкивания шаров в данном случае будет меньше того значения, которое получится из закона Кулона при подстановке вместо r расстояния между центрами.

Основная задача электростатики формулируется следующим образом: по заданному распределению в пространстве источников поля - электрических зарядов - найти значение вектора напряжённости во всех точках поля. Эта задача может быть решена на основе принципа суперпозиции электрических полей.

Напряжённость электрического поля системы зарядов равна геометрической сумме напряжённостей полей каждого из зарядов в отдельности.

Заряды могут быть распределены в пространстве либо дискретно, либо непрерывно. В первом случае напряжённость поля для системы точечных зарядов

где - напряжённость поля i -го заряда системы в рассматриваемой точке пространства, n - общее число дискретных зарядов системы.

Если электрические заряды непрерывно распределены вдоль линии, то вводится линейная плотность зарядов t , Кл/м.

t = (dq/dl),

где dq - заряд малого участка длиной dl .

Если электрические заряды непрерывно распределены по поверхности, то вводится поверхностная плотность зарядов s , Кл/м 2 .

s = (dq/dS ),

где dq - заряд, расположенный на малом участке поверхности площадью dS .

При непрерывном распределении зарядов в каком-либо объёме вводится объёмная плотность зарядов r , Кл/м 3 .

r = (dq/dV),

где dq - заряд, находящийся в малом элементе объёма dV .

Согласно принципу суперпозиции напряжённость электростатического поля, создаваемого в вакууме непрерывно распределёнными зарядами:

где - напряжённость электростатического поля, создаваемого в вакууме малым зарядом dq , а интегрирование проводится по всем непрерывно распределённым зарядам.

Рассмотрим применение принципа суперпозиции к электрическому диполю.

Электрическим диполем называется система из двух равных по абсолютной величине и противоположных по знаку электрических зарядов (q и –q ), расстояние l между которыми мало по сравнению с расстоянием до рассматриваемых точек поля. Вектор , направленный по оси диполя от отрицательного заряда к положительному, называется плечом диполя. Вектор называется электрическим моментом диполя (дипольным электрическим моментом). Напряжённость поля диполя в произвольной точке , где и - напряжённости полей зарядов q и -q (рис. 1.2).

В точке А, расположенной на оси диполя на расстоянии r от его центра (r>>l ), напряжённость поля диполя в вакууме:

В точке В, расположенной на перпендикуляре, восстановленном к оси диполя из его середины, на расстоянии r от центра (r>>l ):

В произвольной точке С модуль вектора напряженности

где r - величина радиуса-вектора, проведенного от центра диполя к точке С; a - угол между радиусом-вектором и дипольным моментом(рис. 1.2).



1.3. Поток напряжённости. Теорема Гаусса для электростатического поля в вакууме

Элементарным потоком напряжённости электрического поля сквозь малый участок площадью dS поверхности, проведённой в поле, называется скалярная физическая величина

dN = = EdScos() = E n dS = EdS ^ ,

где - вектор напряжённости электрического поля на площадке dS , - единичный вектор, нормальный к площадке dS , -вектор площадки, Е n = Ecos() - проекция вектора на направление вектора , dS ^ = dScos() - площадь проекции элемента dS поверхности на плоскость, перпендикулярную вектору (рис. 1.3).

Теорема Гаусса

Поток напряжённости электростатического поля в вакууме сквозь произвольную замкнутую поверхность пропорционален алгебраической сумме электрических зарядов, охватываемых этой поверхностью:

где все векторы направлены вдоль внешнихнормалей к замкнутой поверхности интегрирования S , которую часто называют гауссовой поверхностью.

1.4. Потенциал электростатического поля. Работа, совершаемая силами электростатического поля при перемещении в нём электрического заряда

Работа , совершаемая кулоновскими силами при малом перемещении точечного заряда q в электростатическом поле:

где - напряжённость поля в месте нахождения заряда q . Работа кулоновской силы при перемещении заряда q из точки 1 в точку 2 не зависит от формы траектории движения заряда (т.е. кулоновские силы являются консервативными силами). Работа сил электростатического поля при перемещении заряда q вдоль любого замкнутого контура L равна нулю. Это можно записать в виде теоремы о циркуляции вектора напряженности электростатического поля.

Циркуляция вектора напряженности электростатического поля равна нулю:

Это соотношение, выражающее потенциальный характер электростатического поля, справедливо как в вакууме, так и в веществе.

Работа , совершаемая силами электростатического поля при малом перемещении точечного заряда q в электростатическом поле, равна убыли потенциальной энергии этого заряда в поле:

dА= - dW П и А 12 = - DW П = W П1 - W П2 ,

где W П1 и W П2 - значения потенциальной энергии заряда q в точках 1 и 2 поля. Энергетической характеристикой электростатического поля служит его потенциал.

Потенциалом электростатического поля называется скалярная физическая величина j , равная потенциальной энергии W П положительного единичного точечного заряда, помещённого в рассматриваемую точку поля, В.

Потенциал поля точечного заряда q в вакууме

Принцип суперпозиции для потенциала

т.е. при наложении электростатических полей их потенциалы складываются алгебраически.

Потенциал поля электрического диполя в точке С (рис. 1.2)

Если заряды распределены в пространстве непрерывно, то потенциал j их поля в вакууме:

Интегрирование проводится по всем зарядам, образующим рассматриваемую систему.

Работа А 12 , совершаемая силами электростатического поля при перемещении точечного заряда q из точки 1 поля (потенциал j 1 ) в точку 2 (потенциал j 2 ):

А 12 = q (j 1 - j 2).

Если j 2 = 0, то .

Потенциал какой-либо точки электростатического поля численно равен работе, совершаемой силами поля при перемещении положительного единичного заряда из данной точки в точку поля, где потенциал принят равным нулю.

При изучении электростатических полей в каких-либо точках важны разности, а не абсолютные значения потенциалов в этих точках. Поэтому выбор точки с нулевым потенциалом определяется только удобством решения данной задачи. Связь между потенциалом и напряжённостью имеет вид

Е х = , Е у = , Е z = и ,

т.е. напряжённость электростатического поля равна по модулю и противоположна по направлению градиенту потенциала.

Геометрическое место точек электростатического поля, в которых значения потенциалов одинаковы, называется эквипотенциальной поверхностью. Если вектор направлен по касательной к эквипотенциальной поверхности, то и . Это означает, что вектор напряженности перпендикулярен эквипотенциальной поверхности в каждой точке, т.е. E = E n .

1.5. Примеры применения теоремы Гаусса к расчёту электростатических полей s >0) или к ней (если s < 0).

Для всех точек поля

Так как , и полагая потенциал поля равным нулю в точках заряженной плоскости (х = 0), получим

Графики зависимостей Е и j от x приведены на рис. 1.6.

Материал из Википедии - свободной энциклопедии

При́нцип суперпози́ции - один из самых общих законов во многих разделах физики . В самой простой формулировке принцип суперпозиции гласит:

  • Результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.
  • Любое сложное движение можно разделить на два и более простых.

Наиболее известен принцип суперпозиции в электростатике , в которой он утверждает, что напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть сумма напряженностей полей отдельных зарядов .

Принцип суперпозиции может принимать и иные формулировки, которые полностью эквивалентны приведённой выше:

  • Взаимодействие между двумя частицами не изменяется при внесении третьей частицы, также взаимодействующей с первыми двумя.
  • Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нет многочастичных взаимодействий .
  • Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.

В некоторых случаях эти нелинейности невелики, и принцип суперпозиции с некоторой степенью приближения может выполняться. В других случаях нарушение принципа суперпозиции велико и может приводить к принципиально новым явлениям. Так, например, два луча света, распространяющиеся в нелинейной среде, могут изменять траекторию друг друга. Более того, даже один луч света в нелинейной среде может воздействовать сам на себя и изменять свои характеристики. Многочисленные эффекты такого типа изучает нелинейная оптика .

Отсутствие принципа суперпозиции в нелинейных теориях

Тот факт, что уравнения классической электродинамики линейны, является скорее исключением, чем правилом. Многие фундаментальные теории современной физики являются нелинейными. Например, квантовая хромодинамика - фундаментальная теория сильных взаимодействий - является разновидностью теории Янга - Миллса , которая нелинейна по построению. Это приводит к сильнейшему нарушению принципа суперпозиции даже в классических (неквантованных) решениях уравнений Янга - Миллса.

Другим известным примером нелинейной теории является общая теория относительности . В ней также не выполняется принцип суперпозиции. Например, Солнце притягивает не только Землю и Луну, но также и само взаимодействие между Землёй и Луной. Впрочем, в слабых гравитационных полях эффекты нелинейности слабы, и для повседневных задач приближённый принцип суперпозиции выполняется с высокой точностью.

Наконец, принцип суперпозиции не выполняется, когда речь идёт о взаимодействии атомов и молекул . Это можно пояснить следующим образом. Рассмотрим два атома, связанных общим электронным облаком . Поднесем теперь точно такой же третий атом. Он как бы оттянет на себя часть связывающего атомы электронного облака, и в результате связь между первоначальными атомами ослабнет. То есть, присутствие третьего атома изменяет энергию взаимодействия пары атомов. Причина этого проста: третий атом взаимодействует не только с первыми двумя, но и с той «субстанцией», которая обеспечивает связь первых двух атомов.

Нарушение принципа суперпозиции во взаимодействиях атомов в немалой степени приводит к тому удивительному разнообразию физических и химических свойств веществ и материалов, которое так трудно предсказать из общих принципов молекулярной динамики.

Напишите отзыв о статье "Принцип суперпозиции"

Отрывок, характеризующий Принцип суперпозиции

Толпа, окружавшая икону, вдруг раскрылась и надавила Пьера. Кто то, вероятно, очень важное лицо, судя по поспешности, с которой перед ним сторонились, подходил к иконе.
Это был Кутузов, объезжавший позицию. Он, возвращаясь к Татариновой, подошел к молебну. Пьер тотчас же узнал Кутузова по его особенной, отличавшейся от всех фигуре.
В длинном сюртуке на огромном толщиной теле, с сутуловатой спиной, с открытой белой головой и с вытекшим, белым глазом на оплывшем лице, Кутузов вошел своей ныряющей, раскачивающейся походкой в круг и остановился позади священника. Он перекрестился привычным жестом, достал рукой до земли и, тяжело вздохнув, опустил свою седую голову. За Кутузовым был Бенигсен и свита. Несмотря на присутствие главнокомандующего, обратившего на себя внимание всех высших чинов, ополченцы и солдаты, не глядя на него, продолжали молиться.
Когда кончился молебен, Кутузов подошел к иконе, тяжело опустился на колена, кланяясь в землю, и долго пытался и не мог встать от тяжести и слабости. Седая голова его подергивалась от усилий. Наконец он встал и с детски наивным вытягиванием губ приложился к иконе и опять поклонился, дотронувшись рукой до земли. Генералитет последовал его примеру; потом офицеры, и за ними, давя друг друга, топчась, пыхтя и толкаясь, с взволнованными лицами, полезли солдаты и ополченцы.

Покачиваясь от давки, охватившей его, Пьер оглядывался вокруг себя.
– Граф, Петр Кирилыч! Вы как здесь? – сказал чей то голос. Пьер оглянулся.
Борис Друбецкой, обчищая рукой коленки, которые он запачкал (вероятно, тоже прикладываясь к иконе), улыбаясь подходил к Пьеру. Борис был одет элегантно, с оттенком походной воинственности. На нем был длинный сюртук и плеть через плечо, так же, как у Кутузова.
Кутузов между тем подошел к деревне и сел в тени ближайшего дома на лавку, которую бегом принес один казак, а другой поспешно покрыл ковриком. Огромная блестящая свита окружила главнокомандующего.
Икона тронулась дальше, сопутствуемая толпой. Пьер шагах в тридцати от Кутузова остановился, разговаривая с Борисом.
Пьер объяснил свое намерение участвовать в сражении и осмотреть позицию.
– Вот как сделайте, – сказал Борис. – Je vous ferai les honneurs du camp. [Я вас буду угощать лагерем.] Лучше всего вы увидите все оттуда, где будет граф Бенигсен. Я ведь при нем состою. Я ему доложу. А если хотите объехать позицию, то поедемте с нами: мы сейчас едем на левый фланг. А потом вернемся, и милости прошу у меня ночевать, и партию составим. Вы ведь знакомы с Дмитрием Сергеичем? Он вот тут стоит, – он указал третий дом в Горках.
– Но мне бы хотелось видеть правый фланг; говорят, он очень силен, – сказал Пьер. – Я бы хотел проехать от Москвы реки и всю позицию.
– Ну, это после можете, а главный – левый фланг…
– Да, да. А где полк князя Болконского, не можете вы указать мне? – спросил Пьер.
– Андрея Николаевича? мы мимо проедем, я вас проведу к нему.
– Что ж левый фланг? – спросил Пьер.
– По правде вам сказать, entre nous, [между нами,] левый фланг наш бог знает в каком положении, – сказал Борис, доверчиво понижая голос, – граф Бенигсен совсем не то предполагал. Он предполагал укрепить вон тот курган, совсем не так… но, – Борис пожал плечами. – Светлейший не захотел, или ему наговорили. Ведь… – И Борис не договорил, потому что в это время к Пьеру подошел Кайсаров, адъютант Кутузова. – А! Паисий Сергеич, – сказал Борис, с свободной улыбкой обращаясь к Кайсарову, – А я вот стараюсь объяснить графу позицию. Удивительно, как мог светлейший так верно угадать замыслы французов!
– Вы про левый фланг? – сказал Кайсаров.
– Да, да, именно. Левый фланг наш теперь очень, очень силен.
Несмотря на то, что Кутузов выгонял всех лишних из штаба, Борис после перемен, произведенных Кутузовым, сумел удержаться при главной квартире. Борис пристроился к графу Бенигсену. Граф Бенигсен, как и все люди, при которых находился Борис, считал молодого князя Друбецкого неоцененным человеком.
В начальствовании армией были две резкие, определенные партии: партия Кутузова и партия Бенигсена, начальника штаба. Борис находился при этой последней партии, и никто так, как он, не умел, воздавая раболепное уважение Кутузову, давать чувствовать, что старик плох и что все дело ведется Бенигсеном. Теперь наступила решительная минута сражения, которая должна была или уничтожить Кутузова и передать власть Бенигсену, или, ежели бы даже Кутузов выиграл сражение, дать почувствовать, что все сделано Бенигсеном. Во всяком случае, за завтрашний день должны были быть розданы большие награды и выдвинуты вперед новые люди. И вследствие этого Борис находился в раздраженном оживлении весь этот день.
За Кайсаровым к Пьеру еще подошли другие из его знакомых, и он не успевал отвечать на расспросы о Москве, которыми они засыпали его, и не успевал выслушивать рассказов, которые ему делали. На всех лицах выражались оживление и тревога. Но Пьеру казалось, что причина возбуждения, выражавшегося на некоторых из этих лиц, лежала больше в вопросах личного успеха, и у него не выходило из головы то другое выражение возбуждения, которое он видел на других лицах и которое говорило о вопросах не личных, а общих, вопросах жизни и смерти. Кутузов заметил фигуру Пьера и группу, собравшуюся около него.
– Позовите его ко мне, – сказал Кутузов. Адъютант передал желание светлейшего, и Пьер направился к скамейке. Но еще прежде него к Кутузову подошел рядовой ополченец. Это был Долохов.
– Этот как тут? – спросил Пьер.