ГЭС более экологичны по сравнению с другими видами электростанций? Оковы для воды: Гидроэлектростанции - плюсы и минусы Гэс преимущества и недостатки экологические проблемы

Одним из основных достоинств объектов малой гидроэнергетики является экологическая безопасность. В процессе их сооружения и последующей эксплуатации вредных воздействий на свойства и качество воды нет. Водоемы можно использовать и для рыбохозяйственной деятельности, и как источники водоснабжения населения. Однако и помимо этого у микро и малых ГЭС немало достоинств. Современные станции просты в конструкции и полностью автоматизированы, т.е. не требуют присутствия человека при эксплуатации. Вырабатываемый ими электрический ток соответствует требованиям ГОСТа по частоте и напряжению, причем станции могут работать как в автономном режиме, т.е. вне электросети энергосистемы края или области, так и в составе этой электросети. А полный ресурс работы станции - не менее 40 лет (не менее 5 лет до капитального ремонта). Ну а главное - объекты малой энергетики не требуют организации больших водохранилищ с соответствующим затоплением территории и колоссальным материальным ущербом.

При строительстве и эксплуатации МГЭС сохраняется природный ландшафт, практически отсутствует нагрузка на экосистему. К преимуществам малой гидроэнергетики - по сравнению с электростанциями на ископаемом топливе - можно также отнести: низкую себестоимость электроэнергии и эксплуатационные затраты, относительно недорогую замену оборудования, более длительный срок службы ГЭС (40-50 лет), комплексное использование водных ресурсов (электроэнергетика, водоснабжение, мелиорация, охрана вод, рыбное хозяйство).

Многие из малых ГЭС не всегда обеспечивают гарантированную выработку энергии, являясь сезонными электростанциями. Зимой их энергоотдача резко падает, снежный покров и ледовые явления (лед и шуга) так же, как и летнее маловодье и пересыхание рек могут вообще приостановить их работу. Сезонность малых ГЭС требует дублирующих источников энергии, большое их количество может привести к потере надежности энергоснабжения. Поэтому во многих районах мощность малых ГЭС рассматривается не в качестве основной, а в качестве дублирующей.

У водохранилищ малых ГЭС, особенно горных и предгорных районов, очень остро стоит проблема их заиления и связанная с этим проблема подъема уровня воды, затоплений и подтоплений, снижения гидроэнергетического потенциала рек и выработки электроэнергии. Известно, например, что водохранилище Земонечальской ГЭС на реке Куре было заилено на 60% в течение 5 лет.

Для рыбного хозяйства плотины малых ГЭС менее опасны, чем средних и крупных, перекрывающих миграционные пути проходных и полупроходных рыб и перекрывающих нерестилища. Хотя в целом создание гидроузлов не устраняет полностью урон рыбному стаду на основных реках, т.к. речной бассейн - это единая экологическая система и нарушения ее отдельных звеньев неизбежно отражаются на системе в целом.

На волне интереса к возобновляемым источникам энергии в мире то тут, то там возводятся плотины гидроэлектростанций. некоторые из них поражают воображение своей грандиозностью. Но, отдавая должное смелым инженерным решениям, следует помнить, что удерживаемые плотинами огромные массы воды таят в себе страшную разрушительную мощь

Строго говоря, строительство плотин и дамб не обязательно имеет отношение к гидроэнергетике. Московские плотины просто поднимают уровень некогда почти обмелевшей реки, а, например, Краснодарское водохранилище на реке Кубань создано для нужд ирригации. Но все же подавляющее большинство крупных гидросооружений в России связано с энергетической отраслью. Со времен утверждения в 1921 году IX Всероссийским съездом Советов плана ГОЭЛРО наша страна активно использует энергию малых и великих рек.

Коварное дно


Если не вдаваться в подробности классификации, плотины электростанций делятся в основном на гравитационные и арочные. Гравитационная плотина - как правило, имеющая треугольное поперечное сечение - строится из грунта, камня или бетонных блоков. Из самого термина «гравитационная» видно, что такая плотина удерживает массу воды за счет своей тяжести, - течение реки не в силах сдвинуть эту громадину с места, и вода начинает подниматься. Арочные плотины используются в горной местности. За счет своей формы (по сути это фрагмент купола, выгнутого в сторону напирающей воды) такая плотина передает нагрузку на борта каньона. Арочная плотина сложнее в строительстве, но экономичнее в смысле расхода материалов. При высоте 100 м гравитационная плотина должна иметь основание шириной 70-80 м, а у арочной плотины такой же высоты ширина основания составит всего около 5 м. Есть также плотины смешанного гравитационно-арочного типа (пример - плотина крупнейшей в России Саяно-Шушенской ГЭС) и контрфорсного типа.
Чтобы плотина выполняла свою задачу и не преподносила неприятных сюрпризов, требуется тщательное геологическое исследование створов реки в месте, где предполагается строительство ГЭС. История знает случаи, когда плотину ставили на дно, в котором находились карстовые полости. После наполнения водохранилища вода просачивалась в эти полости, а затем находила выход в нижнем бьефе. Водохранилище начинало сливаться, и, чтобы не допустить этого, в карстовые пустоты пришлось закачивать бетон, объем которого был примерно равен объему самой плотины.
Идеальным для строительства плотины является скальное дно, менее предпочтительна скользкая глинистая почва. В последнем случае при недостаточном весе плотины она может просто «уехать» по течению.


Вода дырочку найдет


Плотина ГЭС - структурно сложное сооружение. В ее состав входят глухие плотины - через гребень которых вода не переливается (или, во всяком случае, не должна переливаться); станционные плотины, через которые вода из водохранилища поступает в камеры с турбинами, вращающими валы электрогенераторов; и водосливные плотины, через которые сбрасывается вода для регулирования уровня воды в верхнем бьефе (в водохранилище).
Система водосброса - один из ключевых элементов гидроузла. Уровень воды в перекрытой плотиной реке может значительно колебаться в зависимости от времени года и климатических факторов, таких как таяние снега и льда в верховьях или ливневые дожди. Неконтролируемый сброс воды из верхнего бьефа может привести к разрушению всей конструкции.
Пожалуй, большинство драматических событий, связанных с разрушением плотин, вызвано именно переполнением верхнего бьефа из-за попадания туда большого количества талых или ливневых вод. Последний подобный случай произошел в марте этого года в Индонезии, когда построенная еще голландскими колониальными властями в 1933 году дамба не выдержала натиска тропических ливней. Вырвавшаяся на свободу вода стала причиной гибели около ста человек. Одна из самых масштабных аварий на гидротехнических сооружениях произошла в США в 1976 году. Сначала в земляной дамбе, перекрывавшей реку Тетон (штат Айдахо), появилась небольшая течь. Поначалу на нее не обратили особого внимания, затем, когда течь стала заметнее, ее попытались ликвидировать с помощью строительной техники. В конце концов бульдозеры пришлось бросить, чтобы спасти человеческие жизни. Прорвав наконец земляную плотину, вода размыла ее за считаные минуты.

Хищные моря

Водохранилища - пожалуй, главная «ахиллесова пята» гидроэнергетики. И именно вокруг них ведутся непрекращающиеся дискуссии между энергетиками и экологами. Очевидно, что появившиеся в результате строительства гидроузлов искусственные «моря» нельзя считать лишь неизбежным злом. Водохранилища имеют большое значение для организации судоходства и рыбопромысла, служат резервуарами питьевой воды и выполняют рекреационную функцию (как, например, каскад водохранилищ водораздельного бьефа канала им. Москвы). Часто они помогают решить проблемы паводковых наводнений в районах, лежащих ниже по течению перекрытой реки. Однако цена этому - превращение суши в дно, серьезные перемены в экологической ситуации и даже изменения климата. Нередко затапливаются леса и анаэробное гниение на отмелях больших масс растительной органики приводит к выбросу в атмосферу метана - одного из «парниковых газов». Этот факт несколько портит имидж гидроэнергетики как альтернативы сжиганию ископаемого топлива.

Дитя первых пятилеток - гигантское Рыбинское водохранилище - поглотило, как известно, огромную издревле населенную территорию в самом центре Европейской России. «Море» заполнило собой Молго-Шекснинскую низменность, образовавшуюся в результате таяния ледника. Под водой оказались сотни сел и целый город Молога, церкви, монастыри, кладбища и даже три сотни жителей, не пожелавших покинуть свою «малую родину». «Лес рубят - щепки летят» - таков был один из основополагающих принципов сталинской политики. В более гуманные времена, при строительстве других водохранилищ Волжского каскада, рукотворным морям уже не давали разливаться бесконтрольно, отдавая их береговую линию на откуп рельефу. Однако единственный способ остановить разлив воды - обваловка, то есть сооружение по установленным границам водохранилища земляных дамб. На практике это означает, что находящиеся рядом с дамбой дома, дороги или промышленные объекты оказываются ниже уровня водоема и обеспечение их безопасности становится отдельной проблемой. Речь идет не только о поддержании дамб в исправном техническом состоянии, но и об ограждении этих гидросооружений от, так сказать, человеческого фактора. Сейчас вдоль дамб некоторых водохранилищ Волжского каскада ведется милицейское патрулирование и возводятся заборы.


Плотина и вечность

Нельзя забывать и еще об одной проблеме, связанной с появлением водохранилищ. Под давлением огромной массы влага просачивается в окружающий грунт, поднимая уровень грунтовых вод. Иногда этим можно воспользоваться: например, в районах, где регулярно пересыхают колодцы, запруживание местной речки поможет их наполнить. Однако, когда речь идет о макромасштабах, подъем грунтовых вод приводит к заболачиванию обширных территорий и другим малоприятным последствиям. В частности, одним из аргументов экологов, выступающих против строительства Эвенкийской ГЭС на реке Нижняя Тунгуска, является вероятная инфильтрация воды в полости, оставшиеся от проводившихся в этом районе подземных ядерных взрывов. В этом случае может возникнуть опасность попадания радиоактивных материалов в Нижнюю Тунгуску и Енисей. Создание водохранилищ также может привести к затоплению подземных коммуникаций, подвалов зданий и шахт на прилегающей территории. Разумеется, при проектировании гидроузлов подобные побочные эффекты стараются просчитывать, однако действие водной стихии не может быть предсказуемым на все 100%.

У крупных гидросоружений есть одна уникальная особенность. В отличие от шахты или карьера, их нельзя забросить, отдать на произвол сил природы. Либо плотину надо вечно поддерживать в рабочем состоянии (что практически вряд ли выполнимо), либо по истечении определенного срока гидроузел должен быть демонтирован, а водохранилище слито или превращено в замкнутый водоем. Только так можно избежать катастрофических последствий стихийного разрушения. В этом, кстати, просматриваются общие черты атомной энергетики и гидроэнергетики. Стоимость вывода из эксплуатации АЭС сравнима с затратами на ее постройку. То же самое касается и гидроэлектростанций. Сооруженные в СССР плотины ГЭС рассчитаны на работу в течение ста лет. С одной стороны, век - это немало, но с другой - некоторые гидроэлектростанции, например Жигулевская ГЭС на Волге, уже выработали около половины срока, а то и больше. Таким образом, вопрос о том, что делать с отработавшими свое гидросооружениями и во сколько обойдется их демонтаж или капитальная реконструкция, встанет уже перед ныне живущими поколениями.
Очевидно, что работа с огромными массами воды требует грамотных инженерных решений, технологической дисциплины и ответственности. К счастью, у нас в России - в стране, где ГЭС вносят огромный вклад в энергетическое хозяйство, - есть и технологии, и высококлассные специалисты, способные развивать гидроэнергетику на принципах эффективности, экологичности и безопасности.




Легко. 1. ТЭС. Тепловые Энерго (электро) Станции. Базируются на переработке (сжигании) твердых топливных носителей, таких, как например уголь. Плюсы: 1. Большой объем выработки электроэнергии. 2. Наиболее просты в эксплуатации. 3. Сам принцип работы и постройка их очень просты. 4. Дешевы, легкодоступны. 5. Дают рабочие места. Минусы: 1. Дают меньше электроэнергии, чем ГЭС и АЭС 2. Экологически опасны - загрязнение окружающей среды, парниковый эффект, требуют потребления невозобновляемых ресурсов (как уголь). 3. В силу своего примитивизма являются просто морально устаревшими. ГЭС - Гидро Электро Станция. Базируются на использовании водных ресурсов, реки, приливно-отливные циклы. Плюсы: 1. Относительно экологически безопасны. 2. Дают в разы больше электроэнергии, чем ТЭС. 3. Могут давать дополнительные подпроизведственные структуры. 4. Рабочие места. 5. Более просты в эксплуатации, чем АЭС. . Минусы: 1. Опять же, экологическая безопасность относительна (взрыв плотины, загрязнение воды при отсутствии очистительного цикла, нарушение баланса). 2. Большие затраты на строительство. 3. Дают меньше энергии, чем АЭС. АЭС - Атомные Электростанции. Самые совершенные на данный момент ЭС по уровню мощности. Используют урановые стержни изотопа урана -278 и энергию атомной реакции. Плюсы: 1. Относительно малое потребление ресурсов. Самый главный - уран. 2. Мощнейшие по выработке электроэнергии ЭС. Одна ЭС может обеспечивать целые города и мегаполисы, ближлежащие районы, вообщем, охватывают огромные территории. 3. Более современны, чем ТЭС. 4. Дают большое количство рабочих место. 5. Открывают пути к созданию более совершенных ЭС. Минусы: 1. Постоянное загрязнение окружающей среды. Смог, радиация. 2. Потребление редких ресурсов - уран. 3. Использование воды, загрязнение ее. 4. Вероятная угроза экологической суперкатастрофы. При потере контроля за ядерными реакциями, нарушениями цикла охлаждения (ярчайший пример обоих ошибок - Чернобыль; АЭС до сих пор закрыта саркофагом, самая страшная экологическая катастрофа в истории человечества) ,внешнем в воздействии (землетрясение, прмер - Фукусима), военной атаке или подрыве террористами - весьма вероятна (или - почти стопроцентна) экологическая катастрофа, а также весьма вероятна угроза взрыва АЭС, - это взрыв, ударная волна, и самое главное, радиоактивное заражение обширной территории, отзвуки такой катастрофы могут поразить весь мир. Потому АЭС является наравне с ОМП (Оружием Массового Поражения) одним из самых опасных достижений человечества, хотя АЭС - это Мирный атом. Впервые АЭС была создана в СССР. Энергетику необходимо развивать отнюдь не только в направлении использования возонбновляемых ресурсов, а еще также развивать более совершенные типы ЭС, которые будут принципиально новыми по своей основе и типу работы. Гипотетически, в скором времени начнется освоения космоса, также проникновение в другие тайны микромира и вообще, физики могут дать поразительные результаты. Доведение до максимального совершенства АЭС - также перспективный путь развития энергетики. На данном этапе конечно же, наиболее вероятным и реализуемым является вариант развития ветрогонных комплексов, солнечных батарей и ДОВЕДЕНИЕ до максимального совершенства ГЭС и АЭС.

В последнее время, в качестве альтернативы классическим средне-высоконапорным плотинным ГЭС активно предлагаются низконапорные гидроузлы, работающие на естественном стоке, довольно широко распространенные в Западной Европе. Попробуем разобраться, что это ГЭС и каковы их плюсы и минусы.

Пример низконапорной русловой гидроэлектростанции - ГЭС Iffezheim на Рейне, введена в эксплуатацию в 1978 году. Фото отсюда


Концепция низконапорного руслового гидроузла предусматривает создание на равнинной реке ГЭС с напором в несколько метров, чье водохранилище как правило укладывается в зону естественного затопления поймы при сильных паводках. Такие гидроузлы имеют следующие преимущества:

* Небольшая площадь затопления, в которую как правило не попадают (или почти не попадают) застроенные земли. Следовательно, никого переселять не надо, влияние на экосистемы куда менее значительно.

* В низконапорные плотины гораздо проще интегрировать рыбоходы, да и вниз через турбины рыба проходит с меньшим травматизмом.


Саратовская ГЭС - самая низконапорная в Волжско-Камском каскаде.


Теперь перейдем к недостаткам:

* Такие ГЭС образуют небольшие водохранилища, пригодные в лучшем случае для суточного регулирования стока, а то и вовсе работающие на водотоке. В результате, выработка подобных ГЭС сильно зависит от сезона и погодных условий - в маловодные периоды она резко падает.

* Эффективность использования стока такими ГЭС гораздо меньше, чем классическими - не имея возможности аккумулировать сток в половодье и паводки, они вынуждены сбрасывать массу воды вхолостую.

* Не имея емкого водохранилища, такие гидроузлы не могут бороться с наводнениями.

* С точки зрения судоходства сооружение нескольких низконапорных гидроузлов вместо одного большого приводит к увеличению времени на шлюзование - вместо одного шлюза нужно проходить несколько.

* Низконапорные ГЭС умеют существенно большую удельную стоимость (в расчете на кВт мощности и кВт.ч. вырабатываемой электроэнергии). Чем меньше напор, тем больше габариты и соответственно металлоемкость оборудования, невозможность аккумулирования стока в водохранилище приводит к необходимости создания более мощных водопропускных сооружений, несколько шлюзов дороже, чем один и т.п. Для сравнения, можно привести низконапорную Полоцкую ГЭС в Белоруссии и высоконапорную Богучанскую ГЭС. Первая стоит примерно 4500$ за кВт, вторая - около 1000$ за кВт. Разница, как мы видим - в 4,5 раза.


ГЭС Тукуруи в Бразилии. В амазонской сельве, как и в сибирской тайге, более эффективны большие ГЭС.


Подведем итоги. Преимущества низконапорных ГЭС наиболее существенны в густонаселенных районах, где высокая стоимость земли и большое количество работ по переселению людей, выносу сооружений и инфраструктуры делают крупные ГЭС с большими водохранилищами неприемлемыми. Именно поэтому низконапорные ГЭС получили наибольшее распространение в Европе, где плотность населения высока, а собственных энергоресурсов мало, что вынуждает использовать весь доступный гидропотенциал, пусть и дорогими способами.

В то же время, в относительно малонаселенных регионах очевидны преимущества больших ГЭС - собственно, в основном там их и строят сейчас во всем мире (хотя критерии малонаселенности в разных странах существенно различаются, для Китая с его миллиардным населением переселение нескольких десятков тысяч человек вполне приемлемо).


Низконапорные русловые ГЭС не конкурируют со средне- и высоконапорными - у каждого типа гидроэлектростанций своя «экологическая ниша», в которой они наиболее эффективны. И ссылки на русловые ГЭС в Западной Европе при обсуждении гидроэнергетических проектов в Восточной Сибири являются сравнением несравнимого.

Преимущества ГЭС:

Использование возобновляемой энергии.

Очень дешевая электроэнергия.

Работа не сопровождается вредными выбросами в атмосферу.

Быстрый (относительно ТЭЦ/ТЭС) выход на режим выдачи рабочей мощности после включения станции.

Недостатки ГЭС:

Затопление пахотных земель

Строительство ведется там, где есть большие запасы энергии воды

На горных реках опасны из-за высокой сейсмичности районов

С энергетической точки зрения имеют ряд преимуществ по сравнению со всеми типами ТЭС и АЭС.

Во-первых, они вообще не нуждаются в топливе, благодаря чему их энергия в 5-6 раз дешевле энергии ТЭС и 8-10 раз дешевле энергии АЭС. КПД гидроэлектростанций очень высок, 80-90%.

Во-вторых, ГЭС обладают исключительно высокими маневренными свойствами: работающий гидроагрегат может увеличить мощность практически мгновенно, а запуск остановленного гидроагрегата занимает всего 1-2 мин. Неравномерность графика нагрузки практически не влияет на экономичность работы ГЭС. Эти качества делают ГЭС незаменимыми для работы в пиковой части графика, при этом выравниваются нагрузки на ТЭС и снижается их расход топлива.

Бесопорные энергетические преимущества ГЭС не дают тем не менее основания противопоставлять их электростанциям других типов.

В ряде стран и экономических районов гидроэнергоресурсы либо недостаточны, либо отдалены от центров потребления энергии.

Выработка энергии на ГЭС резко колеблется в зависимости от водности года.

Начальные затраты на строительство ГЭС чаще всего выше, чем на ТЭС, а сроки строительства длиннее. Не всегда оправданы затраты, связанные с затоплениями при создании водохранилища. В то же время эксплуатация ГЭС значительно дешевле тепловых и атомных электростанций. Отсутствуют затраты на топливо, экологические платежи за выбросы, меньше расходы на ремонт, небольшая численность персонала.

Эти обстоятельства и определили место ГЭС в мировой энергетике. Доля участия ГЭС в энергетическом хозяйстве ряда стран различная, что связано с различной структурой топливно-энергетического баланса и различными традициями в развитии энергетики. Гидроэлектростанции обеспечивают порядка 20% российской и мировой выработки электроэнергии. Во многих странах доля гидроэнергетики существенно выше. Например, в наиболее близкой к России по природным условиям Канаде ГЭС производят 58% электроэнергии, в Бразилии - 86%, в Норвегии, известной жесткостью экологического законодательства, - 99%.

Гидроэнергетика является компонентом и другой важнейшей отрасли народного хозяйства - водного хозяйства.

Вода, особенно пресная, которая составляет всего 2,5% мировых запасав воды,- незаменимое природное богатство, одна из основ жизни на Земле. Доступные запасы пресной воды находятся в основном в реках, среднегодовой сток которых во всем мире составляет около 39000 км3.

Если в прошлые столетия в большинстве районов планеты вода казалась бесплатным и неисчерпаемым природным даром, то в XX веке стремительный рост промышленности и городского населения при-

вел к тому, что вода стала рассматриваться как недешевое и в ряде случаев дефицитное сырье.

Использование водных ресурсов неразрывно связано с мероприятиями по их охране, прежде всего для обеспечения необходимого качества воды. При осуществления гидротехнического строительства, вносящего значительные изменения в природные условия, должны тщательно учитываться все факторы его воздействия на окружающую среду.