Энергия осмоса. Соленый киловатт: осмос Где выгодно строить осмотические электростанции

В заголовке нет ошибки, не из "космоса" , а именно из "осмоса"

Мы каждый день убеждаемся, что нас окружает масса самых неожиданных источников возобновляемой энергии. Кроме Солнца, ветра, течений и приливов для выработки электроэнергии можно использовать генераторы, работающие на соли – верней, на разнице, которую она создает между пресной и морской водой. Эта разница именуется градиентом солености, и благодаря явлению осмоса может быть использована для получения избыточного давления жидкости, которое преобразуется в электрическую привычными турбинами.

Известно несколько способов преобразования энергии градиента солености в электроэнергию. Наиболее перспективный на сегодня - преобразование с помощью осмоса, поэтому часто говорят об энергии градиента солености как об энергии осмоса. Но принципиально возможны и другие способы преобразования энергии градиента солености.

Явление осмоса заключается в следующем. Если взять полупроницаемую мембрану (перепонку) и поместить ее в качестве перегородки в каком-либо сосуде между пресной и соленой водой, то осмотические силы начнут как бы перекачивать пресную воду в соленую. Молекулы пресной воды будут переходить через разделительную мембрану во вторую половину сосуда, заполненную соленой водой, а молекулы соли мембрана не будет пропускать в первую половину с пресной водой. За это свойство мембрана и называется полупроницаемой. Выделяющаяся при этом процессе энергия проявляется в виде повышенного давления, возникающего в части сосуда с соленой водой. Это - осмотическое давление (иногда называют осмотическим водопадом). Максимальное значение осмотического давления - разность давлений между раствором (т. е. соленой водой) и растворителем (т. е. пресной водой), при которой осмос прекращается, что происходит из-за образования равенства давлений по обе стороны полупроницаемой мембраны. Образовавшееся повышенное давление в половине сосуда с соленой водой уравновешивает осмотические силы, вытеснявшие молекулы пресной воды через полупроницаемую мембрану в соленую воду.

Явление осмоса известно давно. Впервые его наблюдал А. Подло в 1748 г., но детальное изучение началось более столетия спустя. В 1877 г. В. Пфеффер впервые измерил осмотическое давление при изучении водных растворов тростникового сахара. В 1887 г. Вант-Гофф на основе данных опытов Пфеффера установил закон, определяющий осмотическое давление в зависимости от концентрации растворенного вещества и температуры. Он показал, что осмотическое давление раствора численно равно давлению, которое оказали бы молекулы растворенного вещества, если бы находились в газообразном состоянии при тех же значениях температуры и концентрации.

Для получения осмотической энергии необходимо иметь вблизи более или менее концентрированного раствора источник с малой концентрацией соли. В условиях Мирового океана такими источниками являются устья впадающих в него рек.

Энергия градиента солености, рассчитанная по осмотическому давлению, не подвергается ограничениям по КПД, связанным с циклом Карно; в этом заключается одна из положительных особенностей этого вида энергии. Вопрос состоит в том, как лучше преобразовать ее в электроэнергию.

Первая в мире электростанция, использующая для выработки электричества явление осмоса, открылась на днях в Норвегии. Используя в своей работе только соленую и пресную воду, нынешний прототип электростанции будет вырабатывать 2-4 киловатта, но в перспективе эта цифра значительно увеличится.Для производства энергии станция, построенная норвежской компанией Statkraft, использует явление осмоса, то есть движения растворов через мембрану в сторону большей концентрации солей. Поскольку концентрация солей в обычной морской воде выше, чем в пресной, между разделенными мембраной пресной и соленой водой развивается явление осмоса, и движение потока воды заставляет работать турбину, вырабатывающую энергию.Мощность уже запущенного прототипа невелика и составляет два-четыре киловатт-часа. Как пояснил менеджер проекта Штейн Эрик Скилхаген, цели сразу построить промышленных масштабов электростанцию перед компанией не стояло, важнее было показать, что данная технология в принципе может использоваться в энергетике.Идея использовать явление осмоса для выработки электричества была впервые предложена активистами экологических движений еще в 1992 году, отмечает сайт компании Statkraft. По расчетам инженеров, сегодня можно построить осмотическую электростанцию мощностью 1700 киловатт в час. При этом, в отличие от других станций на альтернативных источниках энергии – солнечной или ветровой – погода не будет оказывать никакого влияния на режим работы станции. Мощности существующего прототипа хватит, чтобы обеспечить электричеством всего лишь кофеварку, но уже к 2015 году Statkraft надеется построить электростанцию, снабжающую электричеством поселок из 10 тысяч частных домов.

Среди предстоящих задач – поиск более энергоэффективных мембран. У применяющихся на станции в Хуруме, что в 60 км к югу от Осло, этот показатель составляет 1 Вт/м2. Через некоторое время Statkraft увеличит мощность до 2-3 Вт, но для выхода на рентабельный уровень необходимо добиться 5 Вт.

Специальная мембрана, пропускающая воду, но не пропускающая молекулы соли, ставится между двумя резервуарами. В один из них наливается пресная вода, в другой - соленая. Поскольку такая система стремится к равновесию, более соленая вода как бы вытягивает пресную воду из резервуара. Если перед мембраной поставить генератор, избыточное давление будет вращать его лопасти и вырабатывать электричество.
Идею, как это часто бывает, подсказала живая природа: по этому же принципу происходит перенос веществ в клетках - такие же частично проницаемые мембраны обеспечивают упругость клеток. Осмотическое давление уже давно успешно применяется человеком при опреснении морской воды, но для выработки электричества пока использовано впервые.
На данный момент прототип вырабатывает около 1 кВт энергии. В ближайшее время эта цифра может увеличиться до 2-4 кВт. Для того чтобы можно было говорить о рентабельности производства, необходимо получить выработку около 5 кВт. Однако, это вполне реальная задача. К 2015 году планируется построить большую станцию, которая обеспечит выработку 25 МВт, что позволит питать электричеством 10000 средних домохозяйств. В перспективе же предполагается, что ОЭС станут такими мощными, что смогут вырабатывать 1700 ТВт в год, столько, сколько сейчас вырабатывает половина Европы. Главная задача на данный момент - найти более эффективные мембраны.
Игра, безусловно, стоит свеч. Преимущества осмотических станций очевидны. Во-первых, соленая вода (для работы станции подходит обычная морская вода) является неисчерпаемым природным ресурсом. Поверхность Земли на 94% покрыта водой, 97% которой является соленой, поэтому для таких станций всегда будет топливо. Во-вторых, для организации ОЭС не требуется строительства специальных площадок: подойдут любые неиспользуемые помещения уже существующих предприятий или других служебных зданий. Кроме того, ОЭС могут быть поставлены в устьях рек, где пресная вода втекает в соленое море или океан - и в этом случае не понадобится даже специально заливать в резервуары воду.

Пресная вода + морская вода = источник энергии

Обычно там, где река впадает в море, пресная вода просто перемешивается с соленой, и никакого давления, которое могло бы послужить источником энергии, там не наблюдается. Профессор Клаус-Виктор Пайнеман (Klaus-Viktor Peinemann) из Института изучения полимеров при Научно-исследовательском центре GKSS в городке Гестхахт на севере Германии, называет те условия, которые необходимы для возникновения осмотического давления: "Если перед смешиванием морскую воду и пресную разделить фильтром - специальной мембраной, пропускающей воду, но непроницаемой для соли, - то стремление растворов к термодинамическому равновесию и выравниванию концентраций сможет реализоваться только за счет того, что вода будет проникать в раствор соли, а соль в пресную воду не попадет".

Если же это происходит в закрытом резервуаре, то со стороны морской воды возникает избыточное гидростатическое давление, называемое осмотическим. Чтобы использовать его для производства энергии, в месте впадения реки в море нужно установить большой резервуар с двумя камерами, отделёнными друг от друга полупроницаемой мембраной, пропускающей воду и не пропускающей соль. Одна камера заполняется соленой, другая - пресной водой. "Возникающее при этом осмотическое давление может быть очень велико, - подчеркивает профессор Пайнеман. - Оно достигает примерно 25-ти бар, что соответствует давлению воды у подножия водопада, низвергающегося с высоты в 100 метров".

Находящаяся под столь высоким осмотическим давлением вода подается на турбину генератора, вырабатывающего электроэнергию.

Главное - правильная мембрана

Казалось бы, все просто. Потому неудивительно, что идея использовать осмос как источник энергии зародилась почти полвека назад. Но… "Одним из главных препятствий в то время стало отсутствие мембран должного качества, - говорит профессор Пайнеман. - Мембраны были чрезвычайно медленными, поэтому эффективность осмотического электрогенератора была бы очень низкой. Но в последующие 20-30 лет произошло несколько технологических прорывов. Мы научились сегодня производить чрезвычайно тонкие мембраны, а это значит, что их пропускная способность стала значительно выше".
Специалисты Научно-исследовательского центра GKSS внесли весомый вклад в разработку той самой мембраны, что позволила теперь на практике реализовать осмотическое энергопроизводство - пусть пока и сугубо экспериментальное. Один из разработчиков, Карстен Бликке (Carsten Blicke), поясняет: "Толщина мембраны составляет около 0,1 микрометра. Для сравнения: человеческий волос имеет в диаметре от 50 до 100 микрометров. Именно эта тончайшая пленка и отделяет, в конечном счете, морскую воду от пресной".

Понятно, что столь тонкая мембрана не может сама по себе выдержать высокое осмотическое давление. Поэтому она наносится на пористую, напоминающую губку, но чрезвычайно прочную основу. В целом такая перегородка выглядит как глянцевая бумага, и то, что на ней имеется пленка, невооруженным глазом заметить невозможно.

Радужные перспективы

Для строительства пилотной установки были необходимы капиталовложения в размере нескольких миллионов евро. Инвесторы, готовые пойти на риск, хоть и не сразу, все же нашлись. Финансировать новаторский проект вызвалась фирма Statkraft - одна из крупнейших энергетических компаний Норвегии, европейский лидер по части использования возобновляемых энергоресурсов. Профессор Пайнеман вспоминает: "Они услышали об этой технологии, пришли в восторг и подписали с нами договор о сотрудничестве. Евросоюз выделил на реализацию этого проекта 2 миллиона евро, остальные средства внесли фирма Statkraft и ряд других компаний, в том числе и наш Институт".

"Ряд других компаний" - это научные центры Финляндии и Португалии, а также одна из норвежских исследовательских фирм. Пилотная установка мощностью от 2 до 4 киловатт, возведенная в Осло-фьорде близ городка Тофте и торжественно вступившая сегодня в строй, предназначена для испытания и совершенствования новаторской технологии. Но руководство компании Statkraft уверено, что уже через несколько лет дело дойдет и до коммерческого использования осмоса. А суммарный мировой потенциал осмотического энергопроизводства оценивается ни много ни мало в 1600-1700 тераватт-часов в год - это примерно половина энергопотребления всего Евросоюза. Важнейшим преимуществом таких установок является их экологичность - они не шумят и не загрязняют атмосферу выбросами парниковых газов. Кроме того, их легко интегрировать в уже имеющуюся инфраструктуру.

Экологичность

Отдельно хочется отметить абсолютную экологичность данного способа добычи электроэнергии. Никаких отходов, окисляющихся материалов для резервуаров, вредных испарений. ОЭС может быть установлена даже в черте города, не нанося никакого ущерба его жителям.
Также работа ОЭС не требует других источников энергии для запуска и не зависит от климатических условий. Все это делает ОЭС практически идеальным способом выработки электроэнергии.

Моря и реки, неисчерпаемые источники энергии, не только приводят в движение турбины приливных, волновых электростанций и ГЭС. Морские и пресные воды могут работать в тандеме - и тогда в роли энергетического генератора выступает такой фактор как изменение солёности воды. Несмотря на то, что солевая энергетика находится лишь в начале своего технологического развития, у неё уже есть очевидные перспективы.

Принцип работы и потенциал солевых станций

В основу солевой генерации положен естественный процесс, называемый осмосом. Он широко представлен в природе, как в живой, так и в неживой. В частности, за счёт осмотического давления соки в деревьях в ходе обмена веществ преодолевают значительное расстояние от корней до вершины, поднимаясь на внушительную высоту - к примеру, для секвойи она составляет порядка сотни метров. Аналогичное явление - осмос - присуще водным объектам и проявляется в перемещении молекул. Движение частиц осуществляется из зоны с большим количеством молекул воды в среду с солевыми примесями.

Перепады солёности возможны в ряде случаев, в том числе при контакте моря или озёр с более пресными водами - реками, лиманами и лагунами у побережья. Кроме того, соседство солёных и пресных вод возможно в регионах с засушливым климатом, в районах расположения подземных солевых месторождений, соляных куполов, а также под морским дном. Разница в солёности сообщающихся масс воды может возникать искусственным путём - в испарительных водоёмах, солнечных стратифицированных прудах, в растворах сбросов химической промышленности и в водных ёмкостях энергетических объектов, в том числе АЭС.

Движение ионов, как и любая природная сила, может быть использовано для выработки энергии. Классический принцип солевой генерации предусматривает обустройство проницаемой для ионов мембраны между пресным и солёным растворами. При этом частицы пресного раствора будут переходить через мембрану, давление солёной жидкости повышается и компенсирует осмотические силы. Так как в природе поступление пресной воды в реках постоянно, то движение ионов будет стабильным, поскольку разница давлений не изменится. Последняя приводит в действие гидротурбины генераторов и производит таким образом энергию.

Возможности выработки энергии зависят прежде всего от показателей солёности воды, а также от уровня её расхода в речном потоке. Усреднённая отметка солёности Мирового океана составляет 35 килограммов на кубометр воды. Осмотическое давление при таком показателе достигает 24 атмосферы, что эквивалентно силе падения воды с высоты плотины в 240 метров. Совокупный сброс воды из пресных водоёмов в моря составляет 3,7 тыс. кубических километров в год. Если применить для генерации 10% потенциала крупнейших рек Евросоюза - Вислы, Рейна и Дуная, то выработанный объём энергии превысит среднее потребление в Европе втрое.

Ещё немного впечатляющих цифр: при обустройстве электростанций в зоне впадения Волги в Каспий можно будет произвести за год 15 ТВт⋅ч энергии. Генерация 10 ТВт⋅ч и 12 ТВт⋅ч энергии вполне возможна в районах слияния Днепр-Чёрное море и Амур-Татарский пролив соответственно. По мнению специалистов норвежской компании Statkraft, суммарный потенциал солевой энергетики достигает 0,7–1,7 тыс. ТВт⋅ч или 10% от мировых потребностей. По самым оптимистичным оценкам экспертов, максимальное задействование возможностей использования солёности воды позволит получить больше электроэнергии, чем человечество потребляет в настоящее время.

Европа: реализованные проекты

Первые попытки учёных добиться выработки электроэнергии путём создания осмотического давления, которое было бы способно приводить в движение турбины генераторов, относятся к семидесятым годам двадцатого века. Уже тогда было предложено задействовать в качестве основного компонента генерирующей установки нового типа полупроницаемую мембрану, неприступную для обратного хода солей, но вполне свободно пропускающую молекулы воды.

Первые разработки вряд ли можно было назвать удачными - мембраны не обеспечивали достаточно мощного потока. Требовались материалы, которые выдерживали бы давление в два десятка раз большее, чем в водопроводных сетях, и при этом имели бы пористую структуру. Прогресс в разработках наметился в середине восьмидесятых годов, после того, как в норвежской компании SINTEF создали дешёвый модифицированный полиэтилен на основе керамики.

После получения новой технологии норвежцы фактически открыли путь к практической реализации проектов солевой генерации. В 2001 году правительство страны выделило компании Statkraft грант на постройку экспериментальной осмотической установки с совокупной площадью мембран в 200 квадратных метров. На возведение станции ушло около $20 млн. Объект построили в городе Тофте (расположен в коммуне Хурум). Базой для строительства послужила инфраструктура бумажного комбината Södra Cell Tofte.

Бумажный комбинат Södra Cell Tofte с экспериментальной установкой

Мощность генератора оказалась более чем скромной - станция производит максимум 4 кВт энергии, чего достаточно лишь для работы двух электрочайников. В перспективе планируется нарастить мощностной показатель до 10 кВт. Тем не менее, следует помнить, что пилотный проект был запущен в качестве эксперимента и предназначался прежде всего для отработки технологий и проверки теоретических выкладок на практике. Предполагается, что станция может быть переведена на коммерческий режим эксплуатации, если эксперимент признают удачным. Рентабельная мощность генератора при этом должна быть повышена до 5 Вт из расчёта на квадратный метр площади мембран, сейчас же этот показатель для норвежской станции - не более 1 Вт на квадратный метр.

Экспериментальная осмотическая установка

Следующим этапом развития солевой генерации на мембранных технологиях стал запуск в 2014 году электростанции в нидерландском Афслёйтдейке. Начальная мощность объекта составила 50 кВт, по непроверенным данным, она может быть наращена до десятков мегаватт. Станция, построенная у побережья Северного моря, в случае развития проекта сможет удовлетворять потребности в энергии 200 тыс. домохозяйств, рассчитали в компании Fudji, выступившей в роли поставщика мембран.

Россия и Япония как перспективные территории

Если говорить о том, в каких регионах мира появятся следующие станции, то больше всего перспектив у такого вида энергетики в Японии. Это связано в первую очередь с налаженным производством необходимых компонентов - компании страны выпускают 70% от мирового объёма осмотических мембран. Вероятно, сработает и географический фактор -специалисты Токийского технического института пришли к выводу о том, что Япония обладает большим потенциалом для развития солевой энергетики. Острова страны со всех сторон окружены океаническими водами, в которые впадает большое количество рек. Задействование осмотических станций даст возможность получать 5 ГВт энергии, что эквивалентно выработке нескольких АЭС, большая часть которых в японском регионе была закрыта после фукусимской катастрофы.

Осмотические мембраны

Не менее привлекательной для развития данного сегмента является и российская территория. По мнению отечественных специалистов, строительство осмотической станции в зоне впадения Волги в Каспийское море может быть вполне реализуемым проектом. Уровень расхода воды в устье реки составляет 7,71 тыс. кубометров в секунду, при этом потенциальная мощность солевой генерации будет колебаться в пределах 2,83 ГВт. Мощность станции, использующей 10% речного стока, составит 290 МВт. Впрочем, развитая хозяйственная деятельность в регионе, обилие фауны и флоры в дельте Волги в некоторой степени осложнит проект строительства станции - потребуется возведение ряда инженерных сооружений, каналов для пропуска рыбы и водоразделов.

Кроме того, в качестве одной из перспективных площадок для внедрения генерации осмоса выступает Крым. Хотя совокупный потенциал рек полуострова невысок, всё же он мог бы удовлетворить энергетические потребности отдельных объектов, к примеру, гостиниц. Специалисты чисто гипотетически рассматривают даже возможность использования канализационных стоков в Крыму в качестве пресного источника для осмотических станций. Объём стоков, которые сейчас сбрасываются в морскую акваторию, в летний период в регионе может превышать интенсивность потока отдельных рек. Тем не менее, в данном случае особо острым становится вопрос технологии эффективной очистки оборудования от загрязнений.

С другой стороны, несмотря на благоприятные географические условия и возможность широкого выбора для размещения генерирующих объектов, системные разработки по данным вопросам в России пока не ведутся. Хотя, по некоторым данным, в 1990 году на базе научной группы Дальневосточного научного центра Академии наук СССР проводилось изучение возможности развития солевой энергетики вплоть до состоявшихся лабораторных опытов, однако результаты этой работы остались неизвестны. Для сравнения - в той же Европе исследования в области создания осмотических станций резко активизировались под давлением экологических организаций ещё с начала девяностых годов. К этой работе в ЕС активно привлекаются всевозможные стартапы, практикуются государственные дотации и гранты.

Пути дальнейшего развития технологий

Наиболее перспективные исследования в отрасли солевой энергетики направлены в основном на повышение эффективности производства энергии с применением упомянутой мембранной технологии. Французским исследователям, в частности, удалось увеличить показатель выработки энергии до уровня 4 кВт на квадратный метр мембраны, что уже вплотную приблизило к реальности вероятность перевода станций на коммерческую основу. Ещё дальше пошли учёные из США и Японии - они сумели применить в мембранной структуре технологию графеновых плёнок. Высокая степень проницаемости достигнута за счёт сверхмалой толщины мембраны, которая не превышает величину атома. Предполагается, что с использованием графеновых мембран выработку энергии на квадратный метр из поверхности можно будет нарастить до 10 кВт.

Группа специалистов из Федеральной политехнической школы Лозанны (Швейцария) занялась исследованием возможности эффективного захвата заряда энергии сторонним путём - без применения турбин генераторов, а непосредственно в процессе прохождения ионов через мембраны. Для этого они использовали в тестовых установках пластины из дисульфида молибдена толщиной в три атома. Данный материал является сравнительно дешёвым, а количество его запасов в природе достаточно велико.

В пластинах делаются микроотверстия для прохождения заряженных частиц солей, которые в процессе движения генерируют энергию. Одна такая пора мембраны может давать до 20 нановатт. По данным Швейцарского федерального технологического института в Цюрихе, мембраны такого типа с площадью в 0,3 квадратных метра вырабатывают порядка мегаватта энергии. Очевидно, что такой показатель в случае успешных экспериментов можно будет считать настоящим прорывом в отрасли. К настоящему же времени исследования находятся на начальном этапе, учёные уже столкнулись с первой проблемой - они пока не в состоянии сделать большое количество равномерно расположенных наноотверстий в мембранах.

В США, Израиле и Швеции тем временем разрабатываются способы получения энергии путём обратного электродиализа - одной из разновидностей мембранной технологии. Данная методика, предусматривающая применение мембран ионоселективного типа, позволяет реализовать схему прямого преобразования солёности воды в электроэнергию. В роли номинального элемента генерации выступает электродиализная батарея, состоящая из электродов и помещённых между ними нескольких мембран, предназначенных отдельно для обеспечения обмена катионов и анионов.

Схема обратного электродиализа

Мембраны образуют несколько камер, в которые поступают растворы с разной степенью насыщенности солями. При прохождении ионов между пластинами в определённом направлении на электродах накапливается электроэнергия. Возможно, с применением самых новых мембранных технологий эффективность таких установок будет высокой. Пока же эксперименты с созданием установок схожей конструкции - с диалитическими батареями - не показали впечатляющих результатов. В частности, применение катионных и анионных мембран даёт всего лишь 0,33 ватта на квадратный метр мембран. Последние же достаточно дороги и недолговечны.

В целом мембранные технологии не осваиваются с нуля - принципиально такие конструкции похожи на пластины, применяемые в установках для опреснения воды, однако при этом они гораздо тоньше и сложнее в производстве. Компании-лидеры выпуска опреснительных мембран, в том числе General Electric, пока не берутся за поставки пластин для осмотических станций. По данным пресс-службы корпорации, к налаживанию производства мембран для энергетики она приступит не ранее, чем через пять или десять лет.

На фоне сложностей с развитием традиционных мембранных технологий ряд исследователей посвятили свою деятельность поиску альтернативных способов солевой генерации. Так, физик Дориано Броджоли из Италии предложил использовать солёность воды для извлечения энергии при помощи ионистора - конденсатора с большой ёмкостью. Накопление энергии происходит на электродах из активированного угля в процессе последовательного поступления в одну и ту же камеру пресной и солёной воды. Учёному в ходе практического эксперимента удалось сгенерировать за один цикл наполнения резервуара 5 микроджоулей энергии. Потенциал своей установки он оценил гораздо выше - до 1,6 килоджоуля на один литр пресной воды при условии использования ионисторов более высокой ёмкости, что вполне сопоставимо с мембранными генераторами.

Схожим путём пошли американские специалисты из Стэнфордского университета. Конструкция их батарей предусматривает заполнение камеры батареи пресной водой с дальнейшей небольшой подзарядкой из внешнего источника. После смены пресной на морскую воду за счёт возрастания количества ионов в десятки раз электрический потенциал между электродами повышается, что приводит к выработке большего количества энергии, чем потраченное на подзарядку батареи.

Совсем другой принцип использования солёности воды является достаточно сложным в реализации, однако он уже опробован на макетах генерирующих установок. Он предусматривает использование разницы давлений насыщенных паров над водными объектами с солёной и пресной водой. Дело в том, что с наращиванием степени солёности воды давление пара над её поверхностью снижается. Разницу давления можно использовать для выработки энергии.

При задействовании микротурбин можно добиться получения до 10 ватт энергии с каждого квадратного метра теплообменника, однако для этого требуются только водные объекты с высокой степенью солёности - к примеру, Красное или Мёртвое моря. Кроме того, технология предусматривает необходимость поддержания низкого, близкого к вакууму, атмосферного давления внутри установки, обеспечение чего в условиях нахождения генератора в открытой акватории является проблематичным.

Энергия из соли: плюсов больше

В сфере солевой генерации, как и в других энергетических отраслях, приоритетным стимулом развития является экономический фактор. В этом плане солевая энергетика выглядит более чем привлекательной. Так, по мнению специалистов, при условии усовершенствования существующих технологий производства энергии с использованием мембран, себестоимость выработки составит €0,08 за 1 кВт - даже при отсутствии субсидирования генерирующих компаний.

Для сравнения, себестоимость производства энергии на ветряных станциях в европейских странах составляет от €0,1 до €0,2 за киловатт. Угольная генерация обходится дешевле - в €0,06–0,08, газоугольная - €0,08–0,1, однако следует учесть, что тепловые станции загрязняют атмосферный воздух. Таким образом, в ценовом сегменте осмотические станции имеют явное преимущество перед остальными видами альтернативной энергетики. В отличие от ветряных и солнечных станций, солевые генераторы более эффективны и технически - их работа не зависит от времени суток и сезона, а уровень солёности воды - практически постоянен.

Строительство осмотических станций, в противовес ГЭС и иным типам станций на водных объектах, не требует затрат на возведение специальных гидротехнических сооружений. В других видах морской энергетики ситуация обстоит хуже. Пронедра писали ранее, что строительство приливных станций требует возведения масштабной и сложной инфраструктуры. Напомним, аналогичные проблемы касаются объектов энергетики, работающих на силе океанических течений и морских волн.

Как одно из направлений альтернативной энергетики, солевой генерации характерен «экологический плюс» - работа осмотических станций абсолютно безопасна для окружающей среды, она не нарушает естественный баланс живой природы. Процесс генерации энергии из солёности воды не сопровождается шумовыми эффектами. Для запуска станций не приходится изменять ландшафт. У них нет выбросов, отходов или каких-то испарений, в связи с чем такие станции могут устанавливаться в том числе непосредственно в городах. Станции всего лишь используют для выработки энергии обычные природные процессы опреснения солёной воды в устьях рек и никак не влияют на их ход.

Несмотря на ряд очевидных преимуществ, солевая энергетика имеет и определённые недостатки, связанные в первую очередь с несовершенством имеющихся технологий. Кроме упомянутых выше проблем с созданием высокопродуктивных надёжных и при этом недорогих мембран, остро стоит вопрос о разработке эффективных фильтров, поскольку поступающая на осмотическую электростанцию вода должна тщательно очищаться от органики, забивающей каналы, предназначенные для прохождения ионов.

К недостаткам станций можно отнести и географическую ограниченность возможности их применения - такие генераторы устанавливаются только на границах пресных и солёных водоёмов, то есть в устьях рек, или на солёных озёрах. Тем не менее, даже при имеющихся недостатках и на фоне своих огромных преимуществ, и при условии преодоления проблем технологического плана, солевая энергетика, бесспорно, получает большие шансы занять одну из ключевых позиций на мировом рынке генерации.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Ведение

Основным направлением альтернативной энергетики является поиск и использование альтернативных (нетрадиционных) источников энергии. Источники энергии -- «встречающиеся в природе вещества и процессы, которые позволяют человеку получить необходимую для существования энергию». Альтернативный источник энергии является возобновляемым ресурсом, он заменяет собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле, которые при сгорании выделяют в атмосферу углекислый газ, способствующий росту парникового эффекта и глобальному потеплению. Причина поиска альтернативных источников энергии -- потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений. Во внимание может браться также экологичность и экономичность

В 2010 году альтернативная энергия (не считая гидроэнергии) составляла 4,9% всей потребляемой человечеством энергии. В том числе для отопления и нагрева воды (биомасса, солнечный и геотермальный нагрев воды и отопление) 3,3%; биогорючее 0,7%; производство электроэнергии (ветровые, солнечные, геотермальные электростанции и биомасса в ТЕС) 0,9%.На возобновляемые (альтернативные) источники энергии приходится всего около 5 % мировой выработки электроэнергии в 2010г.В мае 2009 года 13 % электроэнергии в США были произведены из возобновляемых источников энергии. 9,4 % электроэнергии было выработано на гидроэлектростанциях, около 1,8 % были получены из энергии ветра, 1,3 % из биомассы, 0,4 % из геотермальных источников и 0,3 % от энергии солнца. В Австралии в 2009 году 8 % электроэнергии вырабатывается из возобновляемых источников.

В наше время людям энергии требуется всё больше и больше энергии, поскольку они придумывают всё больше и больше новых изобретений, для которых требуется энергия.

Энергетика зародилась много миллионов лет назад, когда люди научились добывать огонь: они охотились с помощью огня, получали свет и тепло, и он служил источником радости и оптимизма на протяжении многих лет. В своем реферате я расскажу о возможной экологически-чистом источнике энергии, которым люди не загрязняли бы окружающий мир.

1. Обоснование

Почему я выбираю осмотическую электростанцию, как альтернативный вид получения энергии?

Главное преимущества состоит в ее экологичности - нет шума и не загрязняют атмосферу выбросами парниковых газов; - предоставляется непрерывный возобновляемый источник энергии, с незначительными сезонными колебаниями; - легко внедрить уже имеющую инфраструктуру; Осмотическая электростанция может использоваться только в устьях рек, где пресная вода вливается в солёную. Явление осмоса широко распространено в природе, позволяя растениям поглощать влагу листьями, и обычно применяется в процессе опреснения воды.

2. Эффективность использования

Осмотическая электростанция -- стационарная энергетическая установка, основанная на принципе диффузии жидкостей (осмос).

Первая и единственная, на данный момент в мире, осмотическая электростанция построена компанией Statkraft в норвежском городке Тофте, на территории целлюлозно-бумажного комбината «Sцdra Cell Tofte». Строительство электростанции обошлось в 20 миллионов долларов и 10 лет, проведенных в исследованиях и разработке технологии. Эта электростанция пока вырабатывает очень мало энергии: примерно 2--4 киловатта. Впоследствии планируется увеличить выработку энергии до 10 киловатт.

На данный момент электростанция имеет вид экспериментальной, но в случае успешного завершения испытаний, станция будет запущена для коммерческого использования.

Казалось бы, все просто. Потому неудивительно, что идея использовать осмос как источник энергии зародилась почти полвека назад. Но… "Одним из главных препятствий стало отсутствие мембран должного качества, -об этом говорил профессор Пайнеман. - Мембраны были чрезвычайно медленными, поэтому эффективность осмотического электрогенератора была бы очень низкой. Но в последующие 20-30 лет произошло несколько технологических прорывов. Мы научились сегодня производить чрезвычайно тонкие мембраны, а это значит, что их пропускная способность стала значительно выше". Специалисты Научно-исследовательского центра GKSS внесли весомый вклад в разработку той самой мембраны, что позволила теперь на практике реализовать осмотическое энергопроизводство - пусть пока и сугубо экспериментальное. И отсюда следует, что эффективность этой энергии хоть и мала, но это легко компенсируется массовостью таких установок.

осмотический электростанция альтернативный энергетика

3. Технологии

Итак, там где реки впадают в моря и океаны мы имеем огромные источники как пресной так и солёной воды по соседству -- это идеальное место для строительства осмотических электростанций. Как же получить энергию? Наиболее простой способ -- поместить воду в резервуар, который разделен на два отсека полупроницаемой мембраной.

В один отсек подается морская вода, а в другой пресная. За счёт разной концентрации солей в морской и пресной воде, молекулы воды из пресного отсека, стремясь выровнять концентрацию соли, переходят через мембрану в морской отсек. В результате этого процесса в отсеке с морской водой формируется избыточное давление, которое в свою очередь используется для вращения гидротурбины вырабатывающей электроэнергию.

Еще нужно выделить преимущества и недостатки осматической электроэнергии.

Преимущества:

В отличие от ветра и солнца, предоставляется непрерывный возобновляемый источник энергии, с незначительными сезонными колебаниями.

Отсутствует парниковый эффект.

Недостатки:

У текущей мембраны показатель составляет 1 Вт/мІ. Показатель, который позволит сделать станции рентабельными -- 5 Вт/мІ. В мире есть несколько компаний, производящих подобные мембраны (General Electric, Dow Chemical, Hydranautics, Toray Industries), но устройства для осмотической станции должны быть гораздо тоньше производимых сейчас.

Осмотическая электростанция может использоваться только в устьях рек, где пресная вода вливается в солёную.

4. Перспективы

Главным преимуществом ОЭС перед другими типами электростанций является использование ею крайне дешевого сырья. По сути, оно бесплатно, ведь 92-93% поверхности планеты покрыто соленой водой, а пресную несложно получить тем же методом осмотического давления в другой установке. Установив электростанцию в устье реки, впадающей в море, можно одним махом решить все проблемы с поставками сырья. Климатические условия для работы ОЭС не важны - пока вода течет, установка работает.

При этом не создается каких-либо токсичных веществ - на выходе образуется все та же соленая вода. ОЭС абсолютно экологически безопасна, ее можно установить в непосредственной близости от жилых районов. Электростанция не наносит вред живой природе, а для ее сооружения нет необходимости перекрывать реки плотинами, как в случае с ГЭС.

Перспективы использования в России. Реки являются основой водного фонда России. Занимая порядка 12% территории суши, Россия отличается хорошо развитой речной сетью, а также уникальным водным побережьем, имеющим протяженность примерно 60 тыс. км. Реки России принадлежат к бассейнам трех океанов: Северного Ледовитого, Тихого и Атлантического. Таким образом у России есть огромный потенциал в освоении осмотической энергии интерес к этому источнику возобновляемой энергии растет, и ученые всего мира объединяют усилия по его освоению.

Канадская компания Hydro-Quйbec, являющаяся крупнейшим мировым производителем электроэнергии на основе гидроэнергии, совместно с Statkraft ведет исследования, связанные со следующим этапом разработки технологии PRO. Кроме того она изучает возможность создания осмотических станций вдоль береговой линии Канады.

В Японии Токийский технологический институт открыл научно-исследовательский центр по изучению осмотической энергии. По мнению его сотрудников, энергетический потенциал японских рек -- если его реализовать, построив осмотические станции в местах впадения рек в море, -- позволяет заменить 5-6 АЭС.

Заключение

Роль энергии в поддержании и дальнейшем развитии цивилизации очень велика. В современном обществе трудно найти хотя бы одну область человеческой деятельности, которая не требовала бы - прямо или косвенно - больше энергии, чем ее могут дать мускулы человека. Потребление энергии - важный показатель жизненного уровня. В те времена, когда человек добывал пищу, собирая лесные плоды и охотясь на животных, ему требовалось в сутки около 8 МДж энергии. После овладения огнем эта величина возросла до 16 МДж: в примитивном сельскохозяйственном обществе она составляла 50 МДж, а в более развитом - 100 МДж.

В процессе развития цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные не потому, что старый источник был исчерпан.

Самым мощным источником энергии является ядерный - лидер энергетики. Запасы урана, если сравнивать их с запасами угля, не столь уж и велики. Но зато на единицу веса он содержит в себе энергии в миллионы раз больше, чем уголь. При получении электроэнергии на АЭС нужно затратить, считается, в сто тысяч раз меньше средств и труда, чем при извлечении энергии из угля. И ядерное горючее приходит на смену нефти и углю... Всегда было так: следующий источник энергии был и более мощным. То была, если можно так выразиться, "воинствующая" линия энергетики. В будущем при интенсивном развитии энергетики возникнут рассредоточенные источники энергии не слишком большой мощности, но зато с высоким КПД, экологически чистые, удобные в обращении. Например - быстрый старт электрохимической энергетики, которую позднее, видимо, дополнит энергетика солнечная. Энергетика очень быстро аккумулирует, ассимилирует, вбирает в себя все самые новейшие идей, изобретения, достижения науки. Это и понятно: энергетика связана буквально со всем, и все тянется к энергетике, зависит от нее. Поэтому энергохимия, водородная энергетика, космические электростанции, энергия, запечатанная в антивеществе, кварках, "черных дырах", вакууме, - это всего лишь наиболее яркие вехи, штрихи, отдельные черточки того сценария, который пишется на наших глазах и который можно назвать Завтрашним Днем Энергетики.

В заключение можно сделать вывод, что альтернативные формы использования энергии неисчислимы при условии, что нужно разработать для этого эффективные и экономичные методы. Главное - проводить развитие энергетики в правильном направлении.

Размещено на Allbest.ru

...

Подобные документы

    Виды классических источников энергии. Основные причины, указывающие на важность скорейшего перехода к альтернативным источникам энергии. Молния как источник грозовых перенапряжений. Преимущества и недостатки, принцип действия грозовой электростанции.

    курсовая работа , добавлен 20.05.2016

    Основные виды альтернативной энергии. Биоэнергетика, энергия ветра, Солнца, приливов и отливов, океанов. Перспективные способы получения энергии. Совокупная мощность ветроэлектростанций Китая, Индии и США. Доля альтернативной энергетики в России.

    презентация , добавлен 25.05.2016

    Типовые источники энергии. Проблемы современной энергетики. "Чистота" получаемой, производимой энергии как преимущество альтернативной энергетики. Направления развития альтернативных источников энергии. Водород как источник энергии, способы его получения.

    реферат , добавлен 30.05.2016

    Основные достоинства и недостатки геотермальной энергии. Мировой потенциал геотермальной энергии и перспективы его использования. Система геотермального теплоснабжения, строительство геотермальных электростанций. Востребованность геотермальной энергетики.

    контрольная работа , добавлен 31.10.2011

    История развития геотермальной энергетики и преобразование геотермальной энергии в электрическую и тепловую. Стоимость электроэнергии, вырабатываемой геотермальными элетростанциями. Перспективность использования альтернативной энергии и КПД установок.

    реферат , добавлен 09.07.2008

    Проблемы развития и существования энергетики. Типы альтернативных источников энергии и их развитие. Источники и способы использования геотермальной энергии. Принцип работы геотермальной электростанции. Общая принципиальная схема ГеоЭС и ее компоненты.

    курсовая работа , добавлен 06.05.2016

    Типология альтернативной энергетики. Возобновляемая энергия в арабских странах. Ядерная энергетика и ее резервы в арабских странах. Переход к использованию альтернативных источников энергии. Достигнутые результаты в сфере альтернативной энергетики.

    контрольная работа , добавлен 08.01.2017

    Существующие источники энергии. Типы электростанций. Проблемы развития и существования энергетики. Обзор альтернативных источников энергии. Устройство и принцип работы приливных электростанций. Расчет энергии. Определение коэффициента полезного действия.

    курсовая работа , добавлен 23.04.2016

    Основные сведения об альтернативной энергетики. Преимущества и недостатки вакуумных коллекторов. Снижение зависимости от поставок энергоносителей. Применение фокусирующих коллекторов. Преимущества использования экологически чистой солнечной энергии.

    реферат , добавлен 21.03.2015

    Обзор развития современной энергетики и ее проблемы. Общая характеристика альтернативных источников получения энергии, возможности их применения, достоинства и недостатки. Разработки, применяемые в настоящее время для нетрадиционного получения энергии.

Осмос (от греческого слова Osmos - толчок, давление), диффузия вещества, обычно растворителя, через полупроницаемую мембрану, разделяющую раствор и чистый растворитель или два раствора различной концентрации. Полупроницаемую мембрану - перегородка, пропускающая малые молекул растворителя, но непроницаемая для больших молекул растворенного вещества. Явление осмоса (выравнивание концентраций растворов, разделенных полупроницаемой мембраной) лежит в основе обмена веществ, всех живых организмов. Например, стенки клеток растений, животных и человека представляют собой естественную мембрану, которая является частично проницаемой, поскольку она свободно пропускает молекулы воды, но не молекулы других веществ. Когда корни растений впитывало воду, стены их клеток формируют натуральную осмотическую мембрану, которая пропускает молекулы воды и отторгается большинство примесей. Травы и цветы стоят вертикально только за счет так называемого осмотического давления. Поэтому при недостатке воды они выглядят пожухлыми и вялыми. Фильтрующая способность природной мембраны уникальна, она отделяет вещества от воды на молекулярном уровне и именно это позволяет любому живому организму существовать.

Применение мембран для отделения одних компонентов раствора от других известно очень давно. В первой Аристотель обнаружил, что морская вода опресняется, если ее пропустить через стенки воскового сосуда. Изучение этого явления и других мембранных процессов началось гораздо позже, в начале XVIII века, когда Реомюр использовал для научных целей полупроницаемые мембраны природного происхождения. Но к середине 20-х годов прошлого века все эти процессы имели сугубо теоретический интерес, не выходя за пределы лабораторий. В 1927 году немецкая фирма "Сарториус" получила первые образцы искусственных мембран. И только в середине прошлого века американские разработчики, наладили производство ацетатцеллюлозных и нитроцеллюлозных мембран. В конце 50-х - начале 60-х годов с началом широкого производства синтетических полимерных материалов появились первые научные работы, которые легли с основу промышленного применения обратного осмоса.

Первые промышленные возвратно-осмотические системы появились только в начале 70 X лет, поэтому это сравнительно молодая технология по сравнению с тем же ионным обменом или адсорбцией на активированных углях. Однако, в Западных странах обратный осмос стал одним из самых экономичных, универсальных и надежных методов очистки воды, который позволяет снизить концентрацию компонентов, находящихся в воде, на 96-99% и практически на 100% избавиться микроорганизмов и вирусов. Механизм переноса молекул воды через осмотическую мембраны чаще всего представляет собой обычную фильтрацию, при которой происходит задержка частиц размером больше диаметра поросмотичнои мембраны. Выравнивание концентраций по обе стороны такой мембраны возможно только при односторонней диффузии растворителя. Поэтому осмос всегда идет от чистого растворителя к раствору или от разбавленного раствора к концентрированному раствору. В частности, явление осмоса наблюдается, когда два соляные растворы с различными концентрациями разделены полупроницаемой мембраной. Эта мембрана пропускает молекулы и ионы определенного размера, но служит барьером для веществ с молекулами большего размера. Таким образом, молекулы воды способны проникать через мембрану, а молекулы растворенных в воде солей - нет. Если по разные стороны полупроницаемой мембраны находятся солевмистни растворы воды с различной концентрацией солей, молекулы воды будут перемешаться через мембрану из слабо концентрированного раствора в более концентрированный, вызывая в последнем повышение уровня жидкости. Через явление осмоса процесс проникновения воды через мембрану наблюдается даже в том случае, когда оба раствора находятся под одинаковым внешним давлением. Разница в высоте уровней двух растворов разной концентрации пропорциональна силе, под действием которой вода проходит через мембрану. Эта сила называется "осмотическим давлением". На Рис. 23.1. Приведена схема, иллюстрирующая явление осмоса.

Рис. 23.1.

Принцип работы осмотического электростанции основан на образовании осмотического давления. В местах, где река впадает в море, пресная речная вода просто перемешивается с соленой морской водой, и никакого давления, которое могло бы послужить источником энергии, там не наблюдается. Однако, если перед смешиванием морскую воду и пресную разделить фильтром - специальной мембраной, пропускающей воду, но не пропускающей соли, то стремление растворов к термодинамического равновесия и выравниванию концентраций сможет реализоваться только за счет того, что вода будет проникать в раствор соли, а соль в пресную воду не попадет. Специальная мембрана, пропускающая воду, но не проницаема молекулы соли, ставится между двумя резервуарами. В один из них заполняется пресной водой, в другой заполняется соленой водой. Поскольку такая система стремится к равновесию, более соленая вода как бы вытягивает пресную воду из резервуара. Если же это происходит в закрытом резервуаре, то со стороны морской воды возникает избыточное гидростатическое давление. При этом, появляется давление, создает водный поток. Если теперь установить турбину с генератором, избыточное давление будет вращать лопасти турбины и производить электричество На Рис. 23.2. Показана упрощенная схема осмотического станции. На этом Рис.: 1 - морская вода; 2 речная вода; 3 - фильтры; 4 - мембрана; 5 - рабочая камера; 6 - вывод отработанной речной воды; 7 - турбина с электрическим генератором; 8 - вывод.

Рис. 23.2.

Теоретические разработки в этой области появились еще в начале XX века, но для их реализации не хватало главного - подходящей осмотического мембраны. Такая мембрана должна была выдерживать давление, в 20 раз превышающий давление обычного бытового водопровода, и иметь очень высокую пористость. Создание материалов с подобными свойствами стало возможным с развитием технологий производства синтетических полимеров. Действительно, толщина эффективной мембраны составляет около 0,1 микрометра. Для сравнения: человеческий волос имеет в диаметре от 50 до 100 микрометров. Именно эта тончайшая пленка и отделяет, в конечном итоге, морскую воду от пресной воды. Понятно, что столь тонкая мембрана не может сама по себе выдержать высокое осмотическое давление. Поэтому она наносится на пористую напоминающий губку но чрезвычайно прочную основу. Кстати, мембрана для прямого осмоса - это не тонкая стенка, которую рисуют на упрощенных схемах, а длинный рулон, заключенный в цилиндрический корпус. Соединение с корпусом сделаны таким образом, что во всех слоях рулона с одной стороны мембраны всегда находится пресная вода, а с другой - стороны морская, как это показано на Рис. 23.3. На этом Рис.: 1 - пресная вода; 2 - морская вода; 3 - мембрана. На Рис. 23.4. Показано устройство мембраны, помещенной в металлический корпус, цилиндрической формы. На этом Рис.: 1 - пресная вода; 2 - морская вода; 3 - мембрана; 4 - металлический корпус. Применяемые в настоящее время композитные мембраны позволяют значительно снизить гидродинамическое сопротивление. В них тонкий селективный слой наносится химическим путем на пористую основу (подложку). Толщина селективного слоя составляет 0,1-1,0 мкм, а толщина пористой основы - 50-150 мкм. Подложка практически не создает сопротивления потоку благодаря широким порам, а сопротивление селективного слоя значительно снижается благодаря значительному сокращению его толщины. В целом композитная структура мембраны обеспечивает механическую прочность за счет

Рис. 23.3.

Рис. 23.4.

толщины пористой подложки, а кроме того, позволяет снизить общее сопротивление мембраны за счет тонкости селективного слоя. Селективный слой обратных осмотических мембран выполнен из полиамидного материала.

На Рис. 23.S. показано устройство осмотического станции, использует рулонные мембраны.

На этом Рис.: 1 - введение морской воды; 2 - введение речной воды; 3 - фильтры; 4 - рулонные мембраны; 5 - герметичная камера с высоким осмотическим давлением; 6- турбина с электрогенератором.

В 2009 году в Норвегии в городе Тофте начала работу первая в мире электростанция, использующая разницу солености морской и пресной воды для получения электроэнергии. В построенной осмотического электростанции, в отсеке с морской водой создается давление, эквивалентное давления столба воды высотой 120 метров. Это давление приводит в действие вал турбины которой соединен с электрогенератором. Пресная вода самотеком поступает на мембрану. Забор морской воды осуществляется в Тофте с глубин от 35 до 50 метров - в этом слое ее соленость оптимальна. Кроме того, там она значительно чище, чем у поверхности. Но, несмотря на это, мембраны станции требуют регулярной чистки от органических остатков, забивают ее микропоры. На сегодняшний день эта осмотическое станция производит около 1 кВт энергии. В ближайшее время эта цифра может увеличиться до 2-4 кВт. Для того чтобы можно было говорить о рентабельности производства, необходимо

Рис. 23.5. Осмотическое станция с рулонными мембранами

получить выработка около 5 кВт. Однако, это вполне реальная задача. До 2015 года планируется построить большую станцию, которая обеспечит выработку 25 МВт, что позволит питать электричеством 10000 средних домохозяйств. В перспективе же предполагается, что осмотические электростанции станут такими мощными, что смогут производить 1700 ТВт в год, столько, сколько сейчас производит половина Европы.

Преимущества осмотических станций. Во-первых, соленая вода (для работы станции подходит обычная морская вода) является неисчерпаемым природным ресурсом. Поверхность Земли на 94% покрыта водой, 97% которой является соленой, поэтому для таких станций всегда будет топливо. Во-вторых, для строительства осмотических электростанций не нужно строительства специальных гидротехнических сооружений. Экологичность данного способа получения электроэнергии. Никаких отходов, окисляются материалов для резервуаров, вредных испарений. Осмотические электростанции могут быть установлены даже в пределах города, не нанося никакого ущерба его жителям.

Недавно Япония сообщила, что планирует производить энергию с помощью осмотических станций. Япония окружена со всех сторон океаном, в который впадают многочисленные реки. Потому что они текут постоянно, процесс добычи электроэнергии станет непрерывным. Среди плюсов осмотического способа получения энергии это независимость от рельефа местности, станция сможет работать и на равнине. Основными являются географические условия, при которых происходит смешение пресной и соленой воды. Таким образом, устанавливать осмотические электростанции можно в любых районах Японии, где реки впадают в океан. Осмотическая станция смогут производить 5-6 миллионов кВт энергии, для сравнения такой же объем производят 5-6 атомных электростанций, как утверждает Акихико Таниока, профессор Токийского технического университета. К тому же, Япония является одним из главных производителей осмотических мембран. Сейчас на долю японских компаний приходится 70% мирового импорта мембран.