Дисковый вакуум фильтр назначение. Вакуум-фильтры: виды, конструкции, принцип работы, области применения. Фильтрование под вакуумом

В фильтре периодического действия продолжительность отдельных операций может быть изменена. В фильтре непрерывного действия последовательность и продолжительность отдельных операций определяются конструкцией и размерами аппарата. Фильтры непрерывного действия пред назначены обычно для определенного продукта. Свойства подводимой суспензии должны оставаться неизменными.


Вакуумные фильтры непрерывного действия обычного типа могут нормально работать лишь при такой концентрации суспензии, которая обеспечивает накопление на фильтрующей поверхности слоя осадка достаточной толщины. При относительно малом содержании в суспензии взвешенных часта необходимо предварительно удалить из нее часть жидкости (в сгустителем Аппараты периодического действия на период чистки выключают из работы, В аппаратах непрерывного действия, имеющих вид барабана или бесконечной ленты, последовательно производятся наполнение, фильтрация, промывка осадка и регенерация фильтрующей ткани. Несмотря на значительный вакуум, в некоторых случаях не достигаете заданная влажность готового материала требуется дополнительная сушка в этом же аппарате.


Барабанный вакуумный фильтр с наружной фильтрующей поверхностью (рис. 132) применяют в промышленности по сравнения с вращающимися фильтрами других конструкций. Фильтр имеет высокую производительность. Он работает следующим образом. На горизонтальном валу насажен вращающийся барабан 1, состоящий из двух дисков, соединенных по окружности планками. На планки натянута металлическая сетка и сверх сетки - фильтрующая ткань.1 В радиальных плоскостях барабана установлены перегородки, разделяющие внутреннюю полость барабана на изолированные отсеки. Обычно имеется от 12 до 24 отсев ков. Каждый отсек специальной трубкой соединен с золотниковым механизмом распределительной головки 2. При вращении барабана давление внутри данного отсека меняется в зависимости от того, с какой частью распределительной головки он соединяется. Барабан погружен в резервуар с с фильтруемой жидкостью примерно на 1/3 высоты.

Рассмотрим процесс в одном отсеке. Вначале в нем создается вакуум и жидкость засасывается внутрь отсека (зона фильтрации I). После того как отсек выходит из фильтруемой жидкости, в него засасывается воздух для просушивания осадка (зона просушивания II). Если требуется промывка, то после этого подводится промывная вода (зона промывки IV). Затем внутри отсека создают избыточное давление, и воздух проходит сквозь слой осадка - на фильтрующей ткани (зона отдувки VI). После этого осадок срезается ножом с фильтрующей ткани, а оставшаяся после срезания пленка осадка удаляется при продувке фильтра сжатым воздухом (зона продувки VIII). Затем цикл повторяется. Нож для съема осадка не соприкасается с поверхностью барабана - он является лишь направляющей плоскостью. III, V, VII и IX - мертвые зоны, препятствующие сообщению между собой рабочих зон.

Отсос воздуха из барабана, подача сжатого воздуха в барабан, откачка отфильтрованной жидкости производятся через трубы, соединенные с золотниковым механизмом. Таким образом, за один оборот барабана непрерывно автоматически чередуются циклы работы фильтра - фильтрование, промывка, сушка и разгрузка.

Максимальная производительность достигается при наибольшем погружении барабана (-40% поверхности); размеры поверхности фильтрации таких аппаратов меняются от 0,25 до 85 м 2 . Барабаны диаметром более 3,7 м обычно не применяют. Толщина слоя осадка в барабанных вакуумных фильтрах непрерывного действия поддерживается 20-40 мм, а при трудно фильтруемых осадках достигает всего 5-10 мм. Толщина слоя осадка зависит от частоты вращения барабана, которая может изменяться от 0,1 до 1,5 об/мин.

влажность осадка редко бывает ниже 10 %, чаще 30 % и более. Пар и газы из верхней части аппарата отводятся в конденсатор. Если высота помещения позволяет установить барометрическую трубу высотой -10,5 м, то вакуумный насос соединяют непосредственно с аппаратом, что устраняет необходимость установки конденсатора. Расход энергии на вращение фильтра составляет от 0,4 до 4 кВт.

На рис. 133 показан фильтр фирмы Краусс-Маффей-Империал (ФРГ). Такие фильтры выпускают 22 типоразмеров с поверхностью фильтрации от 0,25до 60 м2. Габаритные размеры фильтра приведены в табл. 34 и на рис. 134.

Фильтры изготовляют из гуммированной или специальной стали. Прокладки между ячейками заменяются быстро; их можно изготовить из стали, эбонита, поливинилхлорида, полиэтилена независимо от материала самого барабана. Фильтры имеют шесть различных систем для съема уплотненного осадка, выбираемых в зависимости от характера продукта. Это съем шнуровой, цепной, вальцовый, ножевой с отдачей и без отдачи, шаберный с предварительным фильтром и съем со сходящим фильтровальным полотном. Фильтр снабжен маятниковой мешалкой.

Барабанный вакуумный фильтр с наружной фильтрующей поверхностью принадлежит к типу фильтров, в которых направление движения фильтрата и действие силы тяжести противоположны. Это заставляет принимать меры, препятствующие оседанию частиц или замедляющие его. Для взмучивания твердой суспензии со дна корыта вакуумного фильтра и равномерного распределения ее в перемешиваемом объеме чаще всего применяют качающуюся.мешалку. Можно также повысить концентрацию суспензии, вследствие чего увеличивается вязкость и скорость,оседания твердых частиц уменьшается.

На рис. 135 показан герметизированный барабанный вакуумный фильтр конструкции НИИХИММАШа (поверхность 75 ма). Он предназначен для улавливания взвеси парафина и церезина из масла при температуре -32° С. Применение крупных фильтров уменьшает металлоемкость оборудования на единицу фильтрующей поверхности на 20%, производственную площадь - на 15% и почти в 2 раза сокращает количество обслуживающего персонала.

Характеристики барабанных ячейковых вакуумных фильтров отечественного производства с наружной фильтрующей поверхностью приведены в табл. 35. Фильтры предназначены для разделения твердой и жидкой фаз суспензии со следующими характеристиками: структура твердой фазы - кристаллическая или аморфная (в основной структуре допускается малое количество коллоидных частиц); концентрация суспензии 5-40%; плотность твердой фазы 1-3; температура суспензии не выше 90° С; реакция i нейтральная либо слабощелочная.

Если фильтруемость продукта очень высокая, например при наличии крупных кристаллов или песка, то нецелесообразно применять барабанный вакуумный фильтр, так как здесь трудно обеспечить равномерное прилипание материала к фильтрующей поверхности. В этих случаях целесообразно при-] менять непрерывные ленточные или тарельчатые фильтры. В случае, если! необходимо несколько промывок из-за сильного прилипания, целесообразно! применить ленточный фильтр. Когда суспензия содержит мало взвешенных! частиц или твердые вещества создают опасность забивания фильтрующего! материала, целесообразно использовать фильтр с намывным слоем.

Таблица 35

Фильтры со шнуровым съемом осадка могут работать при очень малой толщине отфильтрованного слоя (3 мм). При этом в большинстве случаев осадок можно удалять без отдувки сжатым воздухом. Ячейковый шнуровой фильтр (корд-фильтр) имеет по окружности барабана желоба с входящими в них бесконечными толстыми шнурами, образующими фильтрующую основу. Осадок отлагается непосредственно на шнурах, вместе с ними сходит с поверхности барабана и окончательно удаляется при перегибе шнуров на валике небольшого диаметра (рис. 136).


Фирмой Филипп (Франция) предложен метод съема осадка пучком шнуров для тонкого слоя отфильтрованного материала. Особенностью конструкции является применение одного бесконечного шнура, благодаря чему уменьшается возможность износа в местах соединения шнуров. В случае разрыва шнура аппарат автоматически останавливается. Исправление производится достаточно быстро, так что не возникает опасности смешивания суспензии с отфильтрованной жидкостью. Схема такого устройства для удаления осадка приведена на ри с. 137.


Применяют также барабанные вакуумньх. фильтры с ленточным съемом осадка (фирмы Ведаг, ФРГ; Эймко, США и др.). Фильтровальная ткань в зоне съема сходит с барабана на систему роликов, где осадок сбрасывается с ткани, а лента после этого промывается. Стоимость фильтров повышается примерно на 20%, но зато качество фильтрации значительно улучшается. На рис. 138 показана схема устройства фирмы Филипп (Франция), в котором над тканью, закрепленной на барабане фильтра, находится вторая ткань, значительно более тонкая и оказывающая небольшое сопротивление. На этой ткани осадок собирается и уносится наружу. Ткань отделяется от барабана в месте, где находится ролик, и возвращается на барабан, направляемая другим роликом, где снова погружается в ванну с суспензией. Перед погружением в ванну сетка очищается водой, подаваемой через трубчатую форсунку.

С каждой стороны выходящей ткани прикреплен шнур для придания жесткости материалу. Если ширина стола большая, то перемещением ленты управляют с помощью фотоэлементов, соединенных с сервомотором.

Роликовый (или вальцевый) съем осадка применяют в случае, если осадок сильно забивает материал. Ролик изготовляют из шлифованного металла (см. рис. 136, III). Твердые вещества, прилипающие к нему, удаляются лезвием, край которого изготовлен из резины или пластмассы. На рис. 136, II показана схема наиболее простого способа удаления осадка скребком, обычно металлическим, нож которого расположен параллельно образующей барабана. Такой съем рекомендуется при большой толщине слоя осадка.

Для улучшения условий стока фильтрата, а также устранения возможности проникновения воздуха через неплотности созданы конструкции вакуумных фильтров без центрального золотника. Эти фильтры применяют в целлюлозно-бумажной промышленности. Они подходят для суспензий с большим содержанием жидкой фазы и осадком, легко снимающимся с поверхности фильтрата и не замазывающим его пор.

Для быстрофильтруемых суспензий применяют однокамерные или безъячейковые вакуумные фильтры с фильтрующей поверхностью от 0,1 до 10 м 2 . На поверхности барабана безъячейкового фильтра сделаны рифления, которые через небольшие отверстия сообщаются с внутренней полостью барабана. На внутренней поверхности барабана, напротив отверстий, имеются кольцеобразные приливы, образующие поверхность контакта между барабаном и камерами отдувки. Камеры отдувки, число которых определяется числом кольцеобразных приливов, укреплены на полом валу, опирающемся на станину фильтра.

Мембрана для уплотнения между камерой отдувки и контактирующей поверхностью барабана при подаче воздуха в камеру прогибается и передает усилие на эластичную прокладку. Для подвода воздуха жидкости в крышке камеры и в эластичной прокладке предусмотрены специальные отверстия. Фильтрат отсасывается через вал барабана. Для разделения фильтрата и отдувочного воздуха в полом валу установлена перегородка. Другим конструктивным решением этого фильтра является применение башмака с узкими продольными щелями,скользящего по внутренней поверхности барабана. Башмак отсекает вакуумное пространство от секций барабана, в которых происходит съем осадка, подводит воздух продувки осадка и изменяет степень погружения барабана в суспензию, док обычно снимается сжатым воздухом; иногда применяют пульсирующую подачу воздуха, вызывающую колебания фильтровальной ткани.

В конструкции безъячейкового фильтра Ротафильтр фирмы Филипп Франция) предусмотрена возможность замены трущегося элемента.

Благодаря этому отпадает необходимость шлифовки внутренней части барабана и уменьшается износ. Фильтр показан на рис. 139. Схема процесса продувки при помощи трех роликов, покрытых слоем резины или пластмассы, приведена на рис. 140.


Бункерный барабанный фильтр разделен на секции, имеющие бортики высотой 15 см или более. Суспензию подают в бункер при его верхнем положении на барабане. После этого в течение некоторого времени осадок осаждается в бункере. Затем секция подключается к вакуумному пространству для окончательного обезвоживания и сушки. При нижнем положении бункера секция отсоединяется от вакуума и осадок падает. Такие фильтры обычно применяют для грубых осадков. Поверхность фильтрации от 1,0 до 30 м 2 . Применяют также барабанный вакуумный фильтр с верхним питанием. Здесь нет корыта для суспензии, а есть распределительный короб в верхней части. Осадок на фильтре продувается горячим воздухом. Такие фильтры-сушилки изготовляют с поверхностью от 0,8 до 9,4 м 2 . Одна из разновидностей фильтра с верхним питанием - двухбарабанный вакуумный фильтр. Барабаны фильтра вращаются в противоположных направлениях с одинаковой скоростью. Недостаток фильтра - малая рабочая поверхность; достоинство - благоприятные условия для отложения, промывки и просушки осадка.


Особенность работы фильтра в том, что до начала фильтрации на рабочую поверхность наносится слой вспомогательного фильтрующего вещества, так называемый намывной слой (обычно диатомит или древесная мука). В зависимости от фильтруемого продукта и качества вспомогательного фильтрующего вещества толщина намывного слоя осадка составляет от 25 до 75 мм. Намывной слой наносят следующим образом. Суспензия материала, из которого образуется намывной слой, профильтровывается через вакуумный фильтр определенными порциями, причем фильтрация чередуется с просушкой образовавшегося слоя. При таком способе нанесения слой древесной муки получается плотным и не сжимается при дальнейшей работе. Время нанесения фильтрующего слоя от 0,5 до 2 ч.

При работе фильтра осадок снимается при помощи поступательно перемещающегося ножа с микрометрической подачей, причем вместе с осадком снимается тонкий слой вспомогательного вещества. Такой процесс можно применять только в том случае, если остающийся на фильтре продукт не нужен, а важен только фильтрат. В некоторых случаях, напротив, снимают верхний слой продукта, оставляя часть его на фильтре вместе с вспомогательным веществом. В этом случае наносят очень тонкий вспомогательный слой. Такой процесс предохраняет фильтрующую ткань от быстрого забивания, например, при извлечении дрожжей из питательной среды и приготовлении некоторых антибиотиков.

Далее рассмотрим только фильтр первого типа, где вместе с осадком снимется слой вспомогательного вещества. Такой фильтр работает от 8 ч до 10 дней, после чего снова наносят намывной слой. Применяют его для сильно разбавленных суспензий, содержащих небольшое количество взвесей и не образующих слоя осадка, толщина которого достаточна для нормальной работы фильтра непрерывного действия обычного типа.

Он также предназначен для Фильтрации коллоидальных и липких веществ, быстро забивающих поры ткани. Облагороженный диатомит и древесную муку применяют потому, что они являются сильно пористыми веществами. При герметизации аппарата в нем возможна обработка физиологически вредных растворов.

Нож с микрометрической подачей (рис. 141) имеет острую режущую кромку и при каждом обороте барабана фильтра приближается к его поверхности на расстояние 0,05-0,1 мм (при работе с диатомитом). При работе с древесной мукой эти значения несколько выше.

На рис. 142 приведена схема фильтра с намывным слоем. Фильтр состоит из горизонтального барабана, погруженного в жидкую суспензию на глубину от 30 до 50%. Вакуум у поверхности барабана создают с помощью внутренних трубок, проходящих через цапфу барабана и через клапан на одном конце фильтра. Через клапан фильтрат проходит в ресивер, где жидкость отделяется от воздуха или другого газа, причем жидкость обычно откачивается центробежным насосом, а газ - вакуумным насосом, а если необходимо, то и конденсатором.

Лезвие ножа снимает слой до тех пор, пока расстояние между поверхностью барабана и ножом не достигает (3-3,2 мм. После этого барабан очищают и вновь покрывают слоем диатомита толщиной от 50 до 100 мм. Такая схема применена фирмой Джонс Манвиль Селит Дивижн (США).

Основными преимуществами барабанных вакуумных фильтров, работающих с намывным слоем, являются:

постоянное обновление фильтрующей поверхности перед погружением в суспензию, благодаря чему скорость фильтрации не только не снижается, но и может возрастать по мере среза осадка;

высокое качество фильтрата;

возможность работы без подачи сжатого воздуха во время фильтрации и связанное с этим уменьшение расхода энергии; уменьшение расхода фильтровальной ткани благодаря работе без отдувки и наличию защитного слоя вспомогательного фильтрующего вещества.

Следует также отметить, что глубину среза осадка выбирают с расчетом обеспечения постоянной скорости фильтрации в течение всего периода работы Снижение скорости указывает на то, что поверхность фильтрующего слоя очищается недостаточно и следует увеличить глубину среза. Возрастание скорости характерно для излишней глубины среза, которая сокращает время работы нанесенного фильтрующего слоя. Наиболее приемлем срез глубиной, при которой средняя скорость фильтрации за период от одного до другого среза остается приблизительно постоянной.


В барабанном вакуумном фильтре наружной фильтрующей поверхностью наиболее крупные частицы суспензии расположены в нижней части резервуара, а на поверхности фильтра в первую очередь отлагаются мелкие частицы. Осадок из мелких частиц является очень плотным, затрудняет фильтрацию и тем самым уменьшает производительность фильтра. Во внутреннем вакуумном фильтре, наоборот, наиболее крупные частицы в первую очередь отлагаются на фильтровальной ткани, так как суспензия подается внутрь барабана, а вакуум создается в кольцевом пространстве по окружности барабана. Это пространство разделено перегородками на отдельные отсеки так же, как и в барабанном фильтре с наружной фильтрующей поверхностью. Рабочая сторона с фильтрующей тканью обращена внутрь барабана.

В Суспензия по трубе поступает внутрь барабана и располагается в его нижней части. При этом на фильтрующей поверхности в первую очередь осаждаются наиболее крупные частицы как более тяжелые, вследствие чего нет забивки пор ткани мелкими частицами. Снимаемый ножом осадок падает в помещенный внутри барабана ленточный или шнековый транспортер и удаляется через открытую торцовую часть барабана.

Барабанный вакуумный фильтр с внутренней поверхностью фильтрации рис. 143) предназначен для обезвоживания тяжелых суспензий с быстро исаждающейся твердой фазой, главным образом в производствах по обогаще-ьию руд черных и цветных металлов. Фильтр включает: вращающийся гори-рштальный барабан с 16 секциями, расположенными по внутреннему пери-ierpy и состоящими по длине из двух частей каждая (один конец барабана Впирается через бандаж на опорные ролики, другой - через цапфу барабана!аподшипник скольжения стойки); распределительную головку с цапфой природа фильтра; желобчатый ленточный транспортер для выгрузки осадка, расположенный внутри барабана и опирающийся через металлическую кон-I струкцию с одной стороны на стенку барабана, с другой-на внешнюю стойку. I Лента транспортера имеет самостоятельный привод. Труба для подачи и рас-I !ределения подлине барабана суспензии установлена внутри барабана с укло-I им и имеет отверстия с шиберами.

Фильтры такого типа предназначены для работы с быстрофильтрующи рея суспензиями и неприлипающими осадками. Установлены размеры фильтрующих поверхностей для каждого типа фильтра: 0,25; 1; 5; 10; 25; 40; 63 и 80 м 2 .


Вакуумный дисковый фильтр состоит из ряда дисков, насаженных на пустотелом валу и обтянутых фильтровальной тканью (рис. 144). Внутренняя полость каждого диска разделена на отдельные секторы аналогично барабанному фильтру. Частота вращения вала с дисками до Зоб/мин. Диски погружают в чан с суспензией на глубину -33%. Благодаря наличию вакуума во внутренней полости диска туда засасывается жидкость, а осадок остается на его наружной поверхности. Смена циклов та же, что и в барабанном фильтре. Когда осадок достигнет места выгрузки, ткань слегка надуется воздухом и осадок отделится от нее. По сравнению с барабаными эти фильтры имеют значительно более развитую поверхность фильтрации.

Дисковые вакуумные фильтры непрерывного действия имеют поверхность фильтрации до 85 м 2 ; разрабатываются также фильтры с поверхностью 150 и 200 м2. Они имеют некоторые преимущества по сравнению с барабанными вакуумными фильтрами: значительно меньший расход энергии; простота смены фильтрующей ткани и меньший расход ее (при повреждении ткань может быть заменена на одном лишь секторе, составляющем от 1/8 до 1/12 части окружности диска); компактность установки и более низкая стоимость аппарата.

Для улучшения условий отделения отфильтрованного осадка при отдувке и уменьшения износа фильтрующей ткани в некоторых случаях применяют вакуумный дисковый фильтр с выпуклыми секторами. Выпуклая форма секторов благоприятствует полной очистке фильтрующей поверхности, и кромки пластин для съема осадка могут отстоять от нее на расстоянии до 20 мм. Рабочая поверхность фильтров с выпуклыми секторами составляет от 10 до 80 м 2 .

В табл. 36 приведены основные типоразмеры отечественных дисковых фильтров для фильтрации жидкотекучих нейтральных, кислых и щелочных суспензий, у которых скорость осаждения частиц твердой фазы преобладающего класса крупности не превышает 18 мм/с. Дисковые вакуумные фильтры ДУ имеют детали из чугуна или углеродистых сталей; ДК - из кислотостойких сталей, неметаллических материалов и частично гуммированных материалов.


Недостатки дисковых вакуумных фильтров: малое время промывки; отсутствие мешалки в чане, из-за чего получается осадок высокой и неравномерной влажности. Однако иногда применяют дисковые фильтры с гребковыми мешалками, смонтированными в U-образном чане. Обычно изготовляют фильтры с 16 дисками диаметром от 1,2 до 3,7 м.

В вакуумном тарельчатом фильтре непрерывного действия горизонтальный диск насажен на вертикальном валу. Внутренняя полость диска раздев

Рис. 146. Схема работы горизонтального фильтра:

1 - слабая промывная жидкость; 2 - промывка осадка; 3 - обезвоживание осадка; 4 - питание; 5 - обезвоживание осадка; 6 - промывка водой; 7 - крепкая промывная жидкость; 8 - маточник; 9 - сушка ткани; 10 - распределитель вакуума; 11 - обезвоживание; 12 - продувка воздухом; 13 - очистка ткани; 14 - разгрузка

лена на отдельные ячейки, а каждая ячейка соединена с распределительной головкой, находящейся под диском. Поверх диска, снабженного бортами натянута фильтровальная ткань. Суспензию подают сверху на ткань. Фильтрация происходит за время почти полного оборота диска в горизонтальной плоскости. Фильтр работает при разрежении 100-200 мм рт. ст.

Горизонтальные тарельчатые вакуумные фильтры применяют главным образом для обезвоживания крупнозернистых тяжелых суспензий. Они очень удобны для фильтрации осадков, требующих тщательной промывки. На рис. 145 показан тарельчатый вакуумный фильтр (в разрезе).

Разновидностью является фильтр со съемом осадка при помощи спиральной ленты, расположенной рядом с питающим коробом. Производительность фильтра высокая, так как в отличие от барабанного фильтра холостых пробегов между циклами нет.

Карусельные фильтры, или план-фильтры, с опрокидывающимися ковшами дают возможность лучшей очистки фильтрующей ткани, но имеют при тех же размерах меньшую поверхность по сравнению с тарельчатыми фильтрами. Вращающаяся кольцевая рама фильтра состоит из металлических конструкций. В ней установлены ковши, открытые сверху и вращающиеся на радиально расположенных осях. Такой фильтр представляет собой как бы непрерывную цепь из отдельных вакуумных нутч-фильтров, которые при выгрузке переворачиваются (рис. 146). Внутренняя сторона каждого лотка соединена трубой с общим трубным узлом. Фильтры такой конструкции обычно имеют диаметр кольцевой рамы от 6 до 20 м.

В центре вращения карусели фильтра установлена распределительная головка, соединенная в верхней вращающейся части с ковшами, а в нижней неподвижной части - с соответствующими коммуникациями. Суспензия и промывные жидкости заливаются в ковши с помощью специального устройства, расположенного над вращающейся кольцевой рамой с ковшами.


Ленточный фильтр состоит из ряда неподвижно расположенных вакуумных камер, вдоль которых передвигается конвейерная резиновая лента с вырезами. На ленту натянута фильтровальная ткань. По центру ленты предусмотрены дренажные отверстия. Пройдя последовательно все операции фильтрования, осадок снимается с ткани у конечного ролика. Ленточный фильтр имеет.те же преимущества, что и горизонтальные фильтры, в то же время холостой пробег здесь составляет более 50%. До начала процесса фильтрации ткань непрерывно промывается. Этот фильтр дороже других горизонтальных фильтров. Поверхность его обычно составляет юг 0,1 до 9 м 2 .

Схема ленточного фильтра фирмы Филипп (Франция) приведена на рис. 147. Резиновая конвейерная лента приводится в движение ведущим барашком 3. Ведущий барабан приводится от электродвигателя через редуктор вариатор скорости таким образом, что время полного цикла фильтрации составляет от 1 до 10 мин. Жидкость для фильтрации поступает через воронку распределяется в зоне между заслонами 6 и 7, где фильтрат отсасывается, образовавшийся на ленте осадок проходит под заслоном 7, который имеет тик из тонкой резиновой ленты. В следующих зонах (8 и 9) производится промывка водой. Перегородки в вакуумном пространстве 10 съемные.

Патрубки 11-14 соединены с ресиверами, в которых газ и жидкость разделяются под вакуумом. В конце хода ленты осадок обезвоживается и снимается около ведущего барабана. Ресиверы опорожняются с помощью барометрических конденсаторов или центробежных насосов.

Поверхность фильтрации таких фильтров до 30 м2, предусмотрен выпуск фильтров с поверхностью 60 м2. Фильтр показан на рис. 148.

Преимущества вакуумного ленточного фильтра непрерывного действия! в основном следующие. Фильтр прост по конструкции, так как в нем отсутсвует распределительная головка, а весь он может быть выполнен из антикоррозионных материалов.

Ни одна из частей фильтра не подвергается значительному износу, облегчен доступ ко всем частям фильтра. Производительность такого фильтра возрастает вследствие того, что в первую очередь отлагаются более крупные частицы и исчезает опасность забивания пор ткани мелкими частицами. Благодаря горизонтальному расположению поверхности можно также получать больший слой осадка (до 12 см). Этих преимуществ нет в фильтрах с наружной поверхностью фильтрации.

Важны также удобная промывка благодаря горизонтальному расположению аппарата, а также возможность промывки фильтровального полотна во время холостого хода. Такая промывка производится трубчатыми форсунками с соплами для подачи воды в направлении, обратном направлению фильтрации. Благодаря этому ткань меньше изнашивается и удлиняется срок ее службы. Замена фильтровального полотна здесь также не представляет затруднений.

Область применения ленточных фильтров та же, что и горизонтальных тарельчатых и карусельных, однако, по некоторым данным, производительность ленточного фильтра выше из-за большей скорости перемещения ленты.

Барабан фильтра:

Корпус барабана, состоящий из обечайки и двух передних стенок, размещен в опоре, которая соединена с валом барабана. Посредством отделения кольцевых полосок обечайка барабана разделяется на сегменты; три таких полоски снабжены канавками для закрепления фильтровальной ткани. Выемки сегментов имеют съемные прокладки, состоящие из сеток на верхней стороне и включающие опорные участки на стороне барабана. Фильтрат засасывается из пространства между сеткой и обечайкой барабана, течет по направлению к распределительной головке через систему труб на одной стороне барабана и раструб. На передней стенке со стороны привода расположены одно или два смотровых окна в зависимости от размера установки.

Система управления:

Система управления сконструирована в виде регулирующей клапанной головки, состоит из следующих деталей: клапанной головки, регулирующего диска, опорной плиты, трубы и натяжного устройства из мягкой стали. Стационарная передняя клапанная головка с регулирующим диском подпружинена по направлению к опорной плите, вращающейся с барабаном. Диск регулятора изолирует отдельные ячейки, которые соединены с трубами передней клапанной головки. Некоторые трубы передней клапанной головки оборудованы необходимыми соединительными патрубками.

Корыто фильтра:

Глубина погружения барабана варьируется между 7 и 37%. Корыто заострено концентрически по отношению к барабану, усилено посредством внешних стальных профилей и соединено с боковыми стенками. Эти боковые стенки сконструированы как опоры из стальных профилей, имеют ребра для крепления опорных роликов барабана, привода фильтра, опоры вала мешалки и опорной конструкции фильтра при необходимости. Корыто оборудовано соединительными патрубками для подачи и перелива и патрубками разгрузки.

Мешалка в сборе:

Сварное устройство представляет собой маятниковую мешалку с перемешивающей сеткой, подвешено с обеих сторон и оборудовано лопастями. Мешалка закреплена под осью барабана в опорных роликах, вращается в подшипниках с консистентной смазкой, установленных непосредственно в передних стенках корыта.

Ленточная разгрузка:

Этот метод разгрузки используется для требований по тонкому и вязкому фильтрационному кеку, обеспечивает простую разгрузку из фильтровальной ткани, разбивая кек при обратном движении ткани. Фильтровальная ткань может эффективно промываться до повторного погружения в шлам.

Состоит из комплекта роликов, направляющих ткань через систему разгрузки, систему промывки и обратно в нижнюю часть барабана и в корыто. Может быть легко заменена. Удобный доступ для техобслуживания.

Покраска:

Все детали вакуум-фильтра из обычной стали имеют два слоя краски. Кроме того внутри барабана на них также нанесен завершающий слой краски. Отделочные покрытия устойчивы к воздействию кислот и щелочей.

Детали из нерж. стали не окрашены.

Труба очистки барабана:

Установлена внутри корыта перед барабаном и состоит из промывочной трубы с форсунками для выполнения заключительной стадии разгрузки верхнего фильтрующего слоя на подкладке и интенсивной промывки барабана и фильтрующей ткани.

Сепаратор фильтрата:

Вспомогательный бак для сепарации фильтрата с соответствующими патрубками, соединенными фланцами с входом бака и с вакуумной сетью на верхней стороне, а также для дренажа фильтрата на нижней стороне с соответствующим центробежным насосом.

Полностью из нерж. стали с необходимыми смотровыми окнами, уровнемерами, датчиками уровня и соответствующими опорами.

Инжиниринговый проект: Разработка и внедрение оптимальной конструкции барабанных вакуум фильтров с ножевым съемом осадка и обеспечивающими 9% -ю влажность осадка

Для предприятий специализирующихся на производстве соды, специалисты компании разработали оптимальную конструкцию барабанных вакуум фильтров с ножевым съемом осадка и обеспечивающими 9% -ю влажность осадка.

Техническая характеристика разработанных барабанных фильтров:

Конструктивные особенности:

Барабан

Размеры:
Диаметр: 3000 мм
Длина: 5400 мм
Фильтровальная поверхность: 50 м 2
Количество секторов: 24

Барабан изготовлен из углеродистой стали, поверхность, соприкасающаяся со средой гумированна. На боковых поверхностях барабана предусмотрены смотровые окна с каждой стороны. Поверхность барабана перфорирована и разделена на 24 продольных секции. Каждая секция покрыта полипропиленовой сеткой, поверх барабана натянута фильтровальная ткань.

Приводное устройство

Приводное устройство состоит из двухступенчатого редуктора с червячной передачей с механическим вариатором скорости и с двигателем 4 кВт, 400 В, 50 Гц с фланцами.

Скорость барабана регулируется вручную от 0,2 до 1 об/мин.

Распределительный клапан

Конструкция из чугуна, внутри футерован резиной, плоский с пластиной, компенсирующей износ, из PTFE и с распределительным диском из полипропилена, который отделяет выход от погруженных в среду и соприкасающихся со средой частей и осуществляет продувку воздухом в секторах на нагнетательной фазе.

Каждый выход имеет гибкую, плоскую резиновую вставку, способную выдержать вакуум. Вакуумметры показывают уровень вакуума на каждом выходе из клапана. Оба выхода: DN 150 PN 10.

Корыто фильтра

Корыто фильтра представляет собой сварную конструкцию из углеродистой стали, внутренняя поверхность гумированна. Внизу корыта расположен дренажный вентиль благодаря которому возможно регулировать уровень суспензии в корыте и соответственно менять уровень погружения барабана в суспензию от 10 и до 40%. В корыте предусмотрены два смотровых отверстия для контроля состояния корыта.

Мешалка

Мешалка вибрационного типа изготовлена из конструкционной стали, погружаемая часть футерована резиной. Лопасти должны быть приварены к раме мешалки параллельно барабану и иметь пространство для хода смежных лопастей. Мешалка приводится в действие при помощи кривошипно-шатунного механизма и монтируется между резервуаром и рамой. Коленчатый вал приводится от эл. двигателя 3 кВт, 400 В, 50 Гц, 3 фазы через редуктор с червячной передачей.

Подшипники кривошипа самоцентрирующиеся антифрикционные. Узел кривошипа мешалки должен быть полностью защищены металлической защитой. Скорость мешалки 16 об./мин.

Устройство съема осадка

Фильтр укомплектован скребковым устройством среза осадка изготовленным из полипропилена.

Расстояние между скребком и барабаном регулируется.

Для отлипания осадка от фильтровальной ткани используется противоточный поток воздуха в секторе барабана рядом с устройством съема осадка.

Фильтровальная ткань

Полипропилен.

Сборник фильтрата

Изготовлен из углеродистой стали, внутри футерован полимером и укомплектован двумя противоположными смотровыми окнами и переключателем низкого/высокого уровня.

Размеры цилиндрической части:
Диаметр: 3000 мм
Высота: 3000 мм

Направляющее устройство проволоки

Чтобы предотвратить повреждение ткани потоком воздуха, вокруг барабана должна быть обмотана проволока из нержавеющей стали 316 при использовании автоматического устройства.

Оно состоит из квадратной трубной балки, которой опора двигается на У-образном ролике, приводимым вращением барабана через цепную передачу.

Опора несет барабан для проволоки, который во время намотки проволоки держит проволоку в напряжении с помощью дискового тормоза.

Опора регулируется так, чтобы двигаться параллельно барабану вперед, в обратном направлении, используя соответствующий рычаг.

Материалы конструкции нержавеющая сталь для балки, HDP для ролика и углеродистая сталь с покрытием для опоры.

Направляющее устройства можно передвигать и использовать для каждого фильтра.

Принцип действия барабанного фильтра:

Основным рабочим органом фильтра является барабан, наружная поверхность которого перфорирована и разделена на 24 продольные секции, поверх которых, расположен фильтровальный элемент, барабан крепится на подшипниковые опоры и помещен в корыто с суспензией. Фильтр снабжен рамной мешалкой размещенной на общем валу барабана фильтра и погруженной в суспензию. Мешалка приводится в действие кривошипно-шатунным механизмом и совершая в процессе работы фильтра поступательные колебания в корыте, препятствует оседанию осадка на дно корыта. Вал фильтра полый, внутри которого размещена система полипропиленовых коллекторов, каждый из которых подведен к продольной секции фильтра с одной стороны и к делительной головке фильтра с другой. Делительная головка фильтра соединена с системой коллекторов через специальную шайбу. В ходе процесса фильтрования делительная головка фильтра при помощи шайбы поочередно соединяет секции фильтра через коллектора и распределительный клапан с различными исполнительными устройствами последовательно осуществляя все стадии процесса.

Цикл работы барабанного фильтра выглядит следующим образом:

1-я стадия: начало цикла

подача суспензии в резервуар фильтра, при достижении нужного уровня (20-33% погружения барабана фильтра в суспензию) включается вакуумный насос и начинается рабочий цикл - барабан фильтра начинает вращение

2-я стадия: фильтрование

в погруженных секторах барабана суспензия под воздействием вакуума поступает к погруженным секторам барабана, встретивший с фильтровальной тканью сектора происходит разделение, в результате которого очищенный фильтрат проходит через фильтровальную ткань и по коллектору, подведенному к сектору поступает в приемник фильтрата, а твердые частицы оседают на фильтровальной ткани поверхности сектора образуя слой осадка

3-я стадия: окончание стадии фильтрования

барабан медленно вращается и выносит образовавшийся слой осадка из корыта с суспензией

4-я стадия: обезвоживание осадка

по ходу вращения барабана образовавшийся слой осадка вышедший из корыта обезвоживается посредством вакуума вплоть до подхода к зоне съема

5-я стадия: подготовка осадка к съему

перед зоной съема заканчивается обезвоживание осадка, который к этому моменту достиг требуемой влажности, отключается вакуум и начинается обратная продувка воздухом в противотоке, благодаря чему обезвоженный осадок разрыхляется и лучше отходит при съеме от фильтровальной поверхности сектора барабана

6-я стадия: съем осадка

обезвоженный разрыхленный осадок по ходу вращения подходит к съемному устройству (нож) посредством которого происходит его съем с поверхности барабана

7-я стадия: окончание цикла

вакуум и продувка выключены, фильтр вновь погружается в корыто с суспензией

при входе в корыто с суспензией цикл работы фильтра повторяется, открытие и закрытие вакуума в секторах автоматически контролируется специальным клапаном, смонтированным на фильтре

на фильтре предусмотрена возможность регулирования времени фильтровального цикла, воздействия на скорость вращения барабана и на уровень суспензии в резервуаре

Схема работы барабанного вакуум фильтра с ножевой разгрузкой:

Чертеж барабанного вакуум фильтра с ножевой разгрузкой


Фильтрованием называют процесс или способ разделения твердой и жидкой фаз пульпы при помощи пористой перегородки под действием разности давлений, создаваемой разрежением воздуха или избыточным давлением. Жидкая фаза проходит через поры перегородки и собирается в виде фильтрата, а твердая фаза задерживается на поверхности в виде осадка — кека. Предел обезвоживания зависит от свойств и крупности фильтруемого материала, а также от способа фильтрования. Применяемый часто термин фильтрация относится к естественному движению жидкости через пористую среду в природных условиях.

Связь между разностью давлений (перепадом давления) и скоростью фильтрования v выражается уравнением Дарси

Где К — эмпирический коэффициент фильтрования; р — разность давлений (перепад давления) внутри фильтрующего слоя; h — толщина фильтрующего слоя; i — градиент давления, т.е. падение давления на еденицу длины пути фильтрования (i = p/h).

Цель фильтрования — получение предельно обезвоженной твердой фазы в виде осадка на фильтрующей перегородке и чистой жидкой фазы — фильтрата за перегородкой. В начальный период процесса при чистой перегородке (ткани), когда скорость фильтрования максимальная, так как сопротивление перегородки мало, в фильтрат попадают твердые частицы. Но очень скоро у входа в капилляры задерживаются крупные частицы, образуя скопления, в сводчатой части которых оседают также тонкие частицы. По мере нарастания слоя осадка сопротивление осадка и ткани возрастает, скорость фильтрования при постоянной разности давления снижается и фильтрат становится чище, так как жидкость до подхода к ткани фильтруется через капилляры в толще осадка. Поскольку в осадке задерживаются тонкие частицы твердого, можно применять фильтровальные ткани с порами большими, чем средние размеры частиц.
Согласно ГОСТ 5748-79 суспензии (пульпы) по фильтруемости разделяют на легкофильтруюициеся, скорость фильтрования которых превышает 1500 л/(м 2 ·ч), и труднофильтрующиеся со скоростью фильтрования не более 300 л/ (м 2 ·ч).

В производственных условиях процесс фильтрования включает операции собственно фильтрования (отсасывание или выжимание жидкости и набор осадка), уплотнения, просушки и отдувки осадка, а иногда и промывание осадка.

Работа фильтров оценивается их удельной производительностью с единицы фильтрующей поверхности по сухому осадку или по объему фильтрата.

Производительность фильтра зависит от многих технологических и конструктивных параметров: гранулометрического состава твердой фазы пульпы, содержания твердого в питании, разрежения или давления, продолжительности цикла фильтрования (скорости вращения фильтровальных элементов — дисков, барабана), интенсивности перемешивания пульпы в ванне фильтра, вязкости пульпы, сопротивления осадка и фильтровальной перегородки.

  • Оборудование для фильтрации

    В зарубежной практике применяется заключительная операция - фильтрация для промытого красного шлама в целях сокращения расхода воды на промывку шлама и для его дальнейшей утилизации. Для этих целей эффективно используются дисковые фильтры и барабанные вакуум-фильтры.
    Дисковые вакуум-фильтры служат для фильтрации гидроксида алюминия, полученного в результате разложения алюминатного раствора и затравочной пульпы. Устройство фильтра приведено на рисунке ниже.

  • Дисковый вакуум-фильтр

    а — общий вид: 1 — пустотелый вал; 2 — распределительная шайба; 3 — зона отдувки осадка и регенерации ткани; 4 — сектор; 5 - маятниковая мешалка;
    6 — ванна фильтра; 7 — переливная коробка; 8 — зона набора осадка; 9 — зона про-сушки;
    б
    — принципиальная схема работы и распределение зон: 1 — ванна фильтра;
    2 — переливной порог; 3 — диски фильтра; 4 — секторы; 5 — распределительная головка; 6 — карманы ванны для выгрузки осадка; I-IV — соответственно зоны фильтрования, просушки, отдувки осадка, регенерации фильтроткани; П — проме-жуточные зоны

  • Снятие осадка. Дисковый вакуум-фильтр

  • Дисковый вакуум-фильтр

  • Принцип устройства дискового вакуум-фильтра

    1 - вал; 2 - диск; 3 - ванна (корыто); 4 - нож; 5 - распределительная головка; 6 - сектор; 7 - рамная мешалка; 8 - спускной клапан

  • На горизонтально расположенном двенадцатиканальном вращающемся валу 1 фильтра установлены диски 2, частично погруженные в корыто 3 с фильтруемой суспензией. Каждый диск, в свою очередь, состоит из двенадцати изолированных друг от друга секторов 6 с перфорированными стенками, обтянутыми фильтровальной тканью. Внутренние полости секторов соединены с каналами вала, к торцам которых прижата рабочей поверхностью распределительная головка 5. Распределительная головка имеет ряд камер, расположенных по окружности и разделенных перегородками. Камеры связаны коммуникациями с вакуум-насосом и воздухоотдувкой. Для поддержания твердой фазы суспензии во взвешенном состоянии в корыте под дисками находится рамная мешалка 7, качание которой передается приводом. Для вращения вала с дисками имеется другой привод, который позволяет плавно изменять число оборотов вала. В корыте имеется переливный желоб, который служит для поддержания постоянного уровня суспензии. Фильтр снабжен клапаном отдувки для отделения осадка от секторов.

    При вращении вала все сектора диска последовательно сообщаются с камерами распределительной головки. В зоне фильтрования фильтрат поступает через ткань в полость секторов, а затем через каналы вала и камеру головки, сообщающиеся с вакуумом, отводится из фильтра в мешалку. Твердая фаза задерживается на поверхности ткани, образуя слой осадка; в зоне сушки жидкость отсасывается из осадка и отводится из фильтра через определенный штуцер. В зоне отдувки в сектора подается сжатый воздух. Для съема осадка служат ножи 4. Снятый с дисков осадок подается в бункер и поступает на репульпацию. Суспензия в ванну подается непрерывно из декомпозеров. Аварийный слив осуществляется через спускной клапан 8. Для исключения вытекания гидратной пульпы из корыта в местах выхода мешалки расположено сальниковое уплотнение, и для его более качественной работы используется гидроуплотнение. С торцов вала крепятся распределительные головки с золотниковыми устройствами. Сектора сделаны из сетчатого металла и обтянуты фильтровальной тканью, которая шьется в виде клиновых рукавов капроновыми нитками. Рукав крепится к сектору со стороны патрубка металлической проволокой, а с широкой стороны - капроновыми нитями.

  • Барабанный вакуум фильтр

    Барабанный вакуум-фильтр с наружной фильтрующей поверхностью представляет собой горизонтальный ячейковый барабан, нижней частью погруженный в ванну с пульпой, вращающийся в подшипниках, закрепленных на ванне. Ячейки, разделяющие поверхность барабана на отдельные участки, покрыты фильтровальной тканью поверх перфорированных листов. Фильтровальную ткань закрепляют забивкой жгутов в пазы между ячейками и обмоткой мягкой проволокой по окружности барабана. Устройство для намотки проволоки находится у длинной стороны ванны. В ванне установлена качающаяся (маятниковая) мешалка для предотвращения осаждения твердых частиц пульпы. В одной из торцовых стенок ванны имеется переливное окно, через которое удаляется избыток пульпы. Снизу имеются люки для выпуска пульпы при остановке. К полой цапфе вала барабана примыкает распределительная головка. Каждая ячейка барабана соединяется трубкой, проходящей в полой цапфе, с различными полостями распределительной головки, принцип действия которой такой же, как у дискового фильтра.

  • Барабанный вакуум-фильтр co сходящим полотном

    1 - промывочная трубка; 2 - вакуум-трубы; 3 - кек; 4 - фильтровальное полотно; 5 - нож для срезки кека c фильтровального полотна.

  • За один оборот барабана совершается полный цикл фильтрования. Каждая ячейка барабана после погружения в пульпу через окно цапфы совмещается с находящейся под вакуумом полостью головки, при этом происходит отсасывание жидкости и набор осадка на ткани. После выхода ячейки из пульпы действие вакуума продолжается - осадок просушивается. Фильтрат, выделяющийся во время набора и сушки осадка, удаляется через вакуумное окно головки. При совмещении окна данной ячейки с полостью головки, находящейся под давлением, происходит отдувка осадка и регенерация ткани. Для вспомогательного съема осадка устанавливают нож вдоль длинной стороны ванны.

    Имеются конструкции барабанных вакуум-фильтров со шнуровой или струнной разгрузкой осадка (рис. 1, а). Корпус барабана обмотан шнурами, параллельно сходящими с барабана за зоной просушки и охватывающими вал, расположенный параллельно барабану. Затем шнуры снова возвращаются на барабан перед зоной набора. На месте перегиба шнуров отделяются слои осадка.

  • Рисунок 1

    а - со шнуровым съемом осадка; б - со сходящим полотном:
    1 - барабан; 2 - шнур; 3 - направляющий вал; 4 - фильтровальная ткань; 5 - разгрузочный ролик

  • Барабанные фильтры со шнуровой разгрузкой осадка послужили прототипом барабанных фильтров со сходящим полотном (ГОСТ 5748-79Е). ГОСТом 5748-79Е предусмотрены барабанные вакуум-фильтры с наружной фильтрующей поверхностью различных типоразмеров, в том числе фильтры общего назначения для суспензий, при разделении которых толщина слоя осадка достигает не менее 5 мм за время его образования не более 4 мин. Фильтры подразделяют на типы БОУ, БОК и БОР соответственно по исполнению барабана из углеродистой стали, коррозионностойкой стали и углеродистой стали гуммированной.

    Существуют вакуум-фильтры периодического и непрерывного действия. Примером вакуум-фильтров периодического действия являются чаны с плоским горизонтальным вакуум-фильтром (нутч-фильтры). Над дном резервуара расположена горизонтальная фильтрующая перегородка, дно чана подсоединено через приемный резервуар к вакуумному насосу. Фильтрующая поверхность такого аппарата 1÷6 м 2 , толщина осадка 50÷100 мм, рабочее давление 0,065÷0,09 МПа. Нередко такие чаны делают опрокидывающимися для выгрузки осадка. Фильтры больших размеров опрокидывают с помощью червячного механизма. Дешевизна изготовления, про­стота конструкции и обслуживания, возможность многократной тщательной промывки осадка делают этот аппарат удобным для эксплуатации на предприятиях небольшой мощности и для обра­ботки небольших порций богатых ценными металлами концентра­тов и шламов. Общий недостаток фильтров этого типа - малая производительность вследствие ручной выгрузки осадка и боль­шие интервалы между отдельными фильтрациями.

    Вакуум-фильтры непрерывного действия относятся к группе фильтров, наиболее совершенных в конструктивном отношении и наиболее часто используемых в гидрометаллургии.

    Основные типы таких фильтров: 1) барабанные с фильтрацией на внешней и на внутренней поверхности; 2) дисковые.

    Характерная особенность вакуум-фильтров непрерывного дей­ствия - полная автоматизация смены отдельных циклов процесса фильтрации, протекающих на их рабочей поверхности. В процессе фильтрации поддерживается постоянный вакуум.

    В барабанных вакуум-фильтрах (рисунок 17) с фильтрацией на внешней поверхности барабан фильтра погружен на ~1/3 в филь­труемую пульпу и вращается со скоростью 5÷20 об/ч.

    Твердый осадок образуется на поверхности, погруженной в фильтруемую суспензию. По мере вращения барабана раствор от­сасывается с поверхности фильтра вместе с образовавшимся на ней осадком. Осадок промывается и подсушивается, а затем уда­ляется скребком. Автоматичность смены отдельных циклов дости­гается подводом вакуума и сжатого воздуха с помощью золотни­кового распределительного устройства.

    1 – мешалка; 2 – корыто; 3 - редуктор; 4 - электродвигатель; 5 - подшипники; 6 - барабан; 7 - цапфа; 8 – распределительная головка; 9 – устройство для затирания трещин в осадке

    Рисунок 17 - Барабанный вакуум-фильтр

    Техническая характеристика барабанных вакуум-фильтров с фильтрацией на внешней поверхности следующая:

    Размеры барабана, м:

    диаметр....... 1,6 1,75 2,6 2,6 2,975

    длина........ 0,6 0,9 1,3 2,6 4,4

    Площадь фильтрующей

    по­верхности, м 2 …….. 3 5 10 20 40



    Мощность электродвигателя,

    кВт.......... 0,7 0,7-1,0 1,4-2,1 2,0-2,5 4,5

    Масса металлических

    час­тей, т........ 3,59 5,61 11,73 12,47 17,81

    При фильтрации на вакуум-фильтре устанавливают один или два ресивера, через которые вакуум-насос соединяется с соответ­ствующими трубами золотникового распределительного устройст­ва. Фильтрат и промывные растворы, накапливающиеся в ресиве­рах, удаляются центробежными насосами (рисунок 18). Производи­тельность фильтра в основном зависит от свойств твердой фазы (минералогического состава, крупности частиц, коллоидно-хими­ческих свойств) и степени разжижения фильтруемой пульпы (ж:т).

    1 - вакуум-фильтр; 2 - сборник для основного фильтрата; 3 - автоматический кла­пан; 4 - поплавки; 5 - сборник для промывных вод; 6 - центробежные насосы; 7 - барометрический конденсатор.

    Рисунок 18 - Схема установки барабанного вакуум-фильтра

    При фильтрации пульпы, содержащей глину и значительное коли­чество мелкой фракции, при ж:т = 1,5÷1 производительность филь­тра обычно 1 т/м 2 за 1 сут. При зернистом материале и при ж:т = 1:1 она достигает 2,5-5 т/м 2 .

    Барабанные вакуум-фильтры с внутренней фильтрующей по­верхностью обычно применяются в тех случаях, когда отделяемые растворы не представляют ценности (например, обезвоживание концентратов), так как конструкция фильтров не позволяет осу­ществлять промывку. Осадок очищают репульпацией и повторной фильтрацией. Поэтому такие фильтры непригодны для отделения растворов в гидрометаллургических процессах.

    Дисковые вакуум-фильтры (рисунок 19) получили довольно широ­кое распространение. Они компактны, удобно разбираются на со­ставные части и при разделении корыта на изолированные секции могут быть применены для фильтрации в одном агрегате разных продуктов или для повторной фильтрации с промежуточной репульпацией.

    Вертикальное расположение фильтрующих поверхно­стей дисков затрудняет промывку обрабатываемого материала на поверхности фильтра. Поэтому осадок, как обычно, репульпируют промывными растворами или водой в чане с мешалкой. После этого проводят вторичную фильтрацию. Последний метод особенно при­годен для фильтрации пульп с повышенным содержанием метал­ла в жидкой части или пульп с высокой адсорбционной способ­ностью их твердой части.

    Рисунок 19 – Дисковый вакуум-фильтр

    Техническая характеристика дисковых вакуум-фильтров с диа­метром барабана 1,8 (в числителе) и 2,5 м (в знаменателе) сле­дующая:

    Число дисков, шт........ 2/4 4/6 6/8

    Площадь фильтрующей поверхности,

    м 2 .......... 9/34 18/51 27/68

    Мощность электродвигателя, кВт …. 1,5-2,2/3,8 2,2/4,5 2,6/4,5

    Масса металлических частей, т …. . 2,72/6,00 3,64/7,98 4,72/9,12

    Фильтры, работающие при избыточном давлении фильтруемой пульпы

    Такие фильтры составляют обширную группу. Пульпу в этих фильтрах подают насосом под давлением. Поэтому их обыч­но называют фильтр-прессами.

    Наибольшее распространение получили рамные фильтр-прессы (рисунок 20), состоящие из ряда чередующихся друг с другом плит и рам, имеющих боковые ручки, которыми они опираются на парал­лельные брусья станины пресса. На станине расположены конце­вая неподвижная и перемещающаяся на роликах подвижная пли­ты. Между этими плитами плотно зажимается комплект плит и рам.

    1 – неподвижная концевая плита; 2 - плиты; 3 - рамы; 4 – подвижная концевая плита; 5 - станина; 6 – гидравлический зажим; 7 – штуцер для ввода осветляемого раствора; 8 – кран для вывода фильтрата и промывной воды

    Рисунок 20 – Рамный фильтр-пресс

    Боковые поверхности плит (рисунок 21), плоские по краям во внутренней части имеют нарифления. Желобки (рифли) плиты со­общаются в нижней ее части с каналом для отвода фильтрата. В верхней, плоской части плиты расположены три отверстия: цент­ральное для фильтруемого раствора, два других для промывного раствора. Между плитами и рамами помещены «салфетки» из фильтровальной ткани. Полые рамы фильтр-пресса, зажатые меж­ду плит, образуют камеру для осадка. Отверстия в плитах совпа­дают с отверстиями в рамах и «салфетках», благодаря чему в фильтр-прессе создаются сквозные каналы для осветляемого раствора. Канал для осветляемого раствора соединен с внутренними поло­стями рам. Мутный раствор насосом подается под давлением в центральный канал фильтр-пресса (рисунок 22). Фильтрат продавли­вается через ткань, стекает по желобкам плит и по отводным кана­лам с кранами попадает в корыто, установленное вдоль фильтра. Из корыта фильтрат направляется в сборник осветленного раство­ра. Для промывки осадка перед выгрузкой плиты используют фильтрпрессы двух типов: фильтровальные и промывные. Промыв­ная плита отличается от фильтровальной тем, что каналы для по­дачи промывных вод соединены в ней отверстиями с боковыми по­верхностями плиты. При промывке сливные краны промывных плит закрывают, поэтому вода проходит через желобки промыв­ной плиты и фильтровальную ткань в осадок и движется последо­вательно через слой осадка, ткань и желобки фильтровальной плиты, после чего сливается через кран. После промывки плиты и рамы раздвигают и осадок под действием силы тяжести частично попадает в сборник, установленный под фильтром. Остальную часть осадка выгружают вручную лопаткой.

    А, А 1 – разрезы промывной и фильтровальной плит

    Рисунок 21 – Плита (а) и рама (б) фильтр-пресса

    1 – промывная плита; 2 – рама; 3 – фильтровальная плита

    Рисунок 22- Схема работы фильтр-пресса при фильтрации (а) и промывке осадка (б)

    Рамы и плиты для фильтр-прессов изготавливают из чугуна или дерева. Для фильтрпрессов с чугунными рамами и плитами допу­стимо абсолютное давление до 1,5 МПа, в фильтр-прессах с деревянными рамами и плитами до 0,5 МПа. Размеры сторон квадрат­ных рам фильтров составляют 0,315-1,0 м. Число рам колеблется от 6 до 50. Плиты и рамы сжимают с помощью гидравлического или электромеханического устройств.

    Основные достоинства фильтр-прессов- большая поверхность фильтрации на единицу площади, занимаемой фильтром, и высокая производительность, достигающая 10 м 3 /(м 2 ·сут).

    Производительность рамных фильтр-прессов по твердому 50- 200 кг/(м 2 ·сут). Чаще всего их применяют не для основной филь­трации, а для осветления растворов или при обработке богатых продуктов.

    Нарушения, влияющие на ход технологического процесса: по­рыв ткани (попадание кека в фильтрат); неисправность плит и рам (снижает производительность за счет поступления большого количества фильтрата в поддон).

    Литература:1осн. , 4 осн. , 1 доп.

    Контрольные вопросы

    2. Какой характерной особенностью обладают вакуум-фильтры непрерывного действия?

    3. В каких случаях обычно применяются барабанные вакуум-фильтры с внутренней фильтрующей поверхностью?

    4. Какие из фильтр-прессов получили наибольшее распространение?

    5. Из каких материалов изготавливаются рамы и плиты фильтр-прессов?

    6. Что является основным достоинством фильтр-прессов?

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

    Национальный минерально-сырьевой университет «Горный»

    Кафедра машиностроения
    Реферат
    По дисциплине: Механическое оборудование обогатительного производства
    Тема: «Вакуум фильтр»

    Выполнил: студент гр. ММ-11 /Сташко И.С. /

    Проверил: доцент / Голиков Н.С. /

    Санкт-Петербург

    2014 год

    Вакуум-фильтр оборудован тремя роликами: отдувочно-раз-грузочным, натяжным и возвратным. Для предупреждения соскальзывания и перекоса фильтровальной ткани относительно поверхности барабана фильтра и роликов в нее по краям вшиваются резиновые жгуты, соответственно которым на поверхности барабана и роликов (по бокам) устроены пазы. Резиновые жгуты обеспечивают герметичность в пределах зоны вакуума и одновременно являются направляющими при движении ткани.

    Вакуум-фильтрационные установки состоят из вакуум-фильтров и необходимого для их работы вспомогательного оборудования: вакуум-насосов, воздуходувок, ресиверов и центробежных насосов.

    Барабанный вакуум-фильтр со сходящим полотном

    Вакуум-фильтр представляет собой полый барабан 1 с перфорированной боковой поверхностью, разделенной изнутри на отдельные ячейки. Поверхность барабана покрыта металлической сеткой и затем фильтровальной тканью. Вал барабана 4 -- полый. С одной стороны он соединен с приводом, а с другой -- с распределительным устройством, позволяющим при вращении барабана отдельным ячейкам соединяться с различными полостями его неподвижной части для последовательного проведения отдельных операций фильтрования. Барабан погружен (на 0,3--0,4 своего диаметра) в резервуар 11, содержащий фильтруемую суспензию. Для того чтобы эта суспензия не выпадала в осадок, предусмотрена качающая мешалка 12.

    На вакуум-фильтрах подлежит автоматизации дозирование подаваемых реагентов. вакуум фильтр барабанный дегельминтизация

    После вакуум-фильтрования в осадке еще останется 23,83 г/г воды, а после центрифугирования 8,98 г/г. Таким образом, не удаляемый никакими из названных способов остаток воды в гид-ратном осадке составляет 8,98 г/г. Из сказанного совершенно очевидно, что обычным отстаиванием практических результатов обезвоживания гидратных осадков достичь невозможно. Между тем также становится очевидным большое значение механического обезвоживания осадка на вакуум-фильтрах или центрифугах. Однако и вакуум-фильтрование осадков не во всех случаях дает благоприятные результаты. Факторами, которые могут влиять на обезвоживаемость осадков, являются количество сухого вещества в осадке М, величина вакуума, время фильтрования, время предварительного отстаивания, соотношение в осадке закисного и окисного железа, соотношение железа и сульфата кальция, применение так называемого «оборотного осадка», добавление при нейтрализации карбоната кальция, аэрирование для окисления двухвалентного железа до трехвалентного, величина pH.

    Общий вид барабанного вакуум-фильтра БОУ2()-2,6 с поверхностью фильтрации 20 м2

    Хотя на фильтр-прессах и ленточных прессах обезвоживают до 75 % всех осадков, в Великобритании для этой цели применяют и вакуумные фильтры. Наиболее широко распространенная конструкция -- барабанный вакуум-фильтр. Барабан состоит из ряда камер, к каждой из которых может подводиться либо вакуум (40--90 кПа), либо избыточное давление. В качестве фильтрующего материала может использоваться ткань, проволочная сетка или конструкция из плотно упакованных проволочных спиралей, расположенных таким образом, чтобы их оси совпадали с направлением вращения. Ил загружают в резервуар, в который погружен барабан, вращающийся со средней скоростью 5 мм/с. В результате вакуумирования погруженной камеры пленка влажного осадка налипает на фильтрующий материал. В процессе вращения барабана ваку-умирование продолжается для создания движущей силы фильтрационного процесса. Незадолго до завершения полного оборота вакуумирование прекращается и прикладывается избыточное давление. Это обеспечивает отделение осадка. Как правило, осадок при таком процессе содержит больше влаги, чем полученный на фильтр-прессе. Тем не менее этот процесс обладает таким важным преимуществом, как непрерывность. Эксплуатационные характеристики процесса вакуумного фильтрования приводятся в работе Нельсона и Тэвери , там же дается перечень возможных аварийных ситуаций.и программа предупредительного контроля оборудования.

    Барабанные вакуум-фильтры предназначены для фильтрования различных суспензий. Они широко применяются в химической, пищевой, горнорудной, металлургической, нефтеперера батывающей и других отраслях промышленности. Для бесперебойной работы вакуум-фильтров толщина слоя кэка при фильтровании суспензии на них или на погружной воронке должна достигать в течение 4 мин не менее 5 мм. Этому требованию удовлетворяют осадки городских сточных вод, прошедшие предварительную обработку (промывку и коагуляцию). Барабанные вакуум-фильтры являются автоматическими непрерывнодействующими механизмами.

    При подготовке вакуум-фильтров к пуску Проверяют наличие масла в масленках и отверстиях для смазки всех смазываемых узлов, надежность закрепления фильтровальной ткани на барабане и ее чистоту, исправность вакуум-насосов, ресиверов, воздуходувок, вакуумной и воздушной линий, дозирующих устройств. Перед пуском закрывают все задвижки и на 20--30 мин пускают фильтры вхолостую. Пуск вакуум-фильтров в работу производят следующим образом: открывают подачу скоагулированного осадка в корыто и включают привод барабана; открывают задвижку на вакуумной линии между ресиверами и вакуум-насосами, а также на линии подачи сжатого воздуха, включают вакуум-насосы и воздуходувки; когда осадок в корыте достигнет уровня переливной трубы, открывают задвижки на вакуумной линии между ресиверами и вакуум-фильтрами; после того как толщина слоя кэка на фильтре составит 5--20 мм, включают центробежные насосы по перекачке фильтрата и производят регулировку подачи осадка в корыто, откачки фильтрата из ресиверов, величины вакуума и давления воздуха.

    Показатели работы вакуум-фильтров зависят от правильного режима эксплуатации всего комплекса сооружений по обработке осадка. Поэтому основными задачами эксплуатации вакуум-фильтрационных установок являются поддержание необходимой степени обработки осадка перед обезвоживанием и выбранного оптимального режима работы вакуум-фильтров, вакуум-насосов и воздуходувок. Получение оптимальных лабораторных данных и перенесение их на производственные установки требуют соответствующего практического опыта и должны поручаться технологу -- специалисту в области фильтрования.

    Преимущество дисковых вакуум-фильтров перед барабанными состоит в том, что занимают меньшую площадь.

    При принятой компоновке вакуум-фильтры устанавливаются на отметке (+15м).[ ...]

    За последние годы барабанные вакуум-фильтры получают широкое применение для обезвоживания шламов, образующихся при нейтрализации травильных вод известью. При травлении черных металлов отработанные растворы содержат до 1 % серной кислоты и до 200 г/л сернокислого железа. После нейтрализации известью образуется шлам влажностью 85--96%- Обезвоживание шлама на барабанных вакуум-фильтрах позволяет снизить его влажность до 50--75%.

    В процессе работы барабанных вакуум-фильтров надо обращать особое внимание на состояние и степень загрязненности фильтровальной ткани. Когда скорость фильтрования уменьшится настолько, что дальнейшая работа вакуум-фильтра станет неэффективной, фильтрование прекращают и производят регенерацию фильтровальной ткани. Регенерацию ткани можно выполнять различными способами: механической очисткой специальными щетками с одновременной промывкой водой, в которую добавлены моющие средства, и продувкой воздухом; промывкой 10%-ным иаствором ингибированной соляной кислоты; комбинацией этих способов. Оптимальный расход ингибированной кислоты устанавливают опытным п тем. Раствор кислоты после регенерации фильтровальной ткани может быть использован повторно, если он не очень загрязнен.

    При 5 =1 производительность вакуум-фильтра с увеличением давления увеличивается незначительно (практически постоянна).

    Уравнение учитывает как условия работы вакуум-фильтров (Р, т, М), так и свойства обезвоживаемого осадка (/?, Си, Ск) и позволяет оценить влияние этих факторов на процесс фильтрования. Так, например, изменение продолжительности оборота барабана вакуум-фильтра с 1,5 до 8 мин. если считать, что остальные величины, входящие в уравнение, остаются неизменными, может понизить производительность вакуум-фильтра в 2,3 раза. Снижение влажности »сходного осадка с 98 до 92% может увеличить производительность вакуум-фильтра (при влажное!ч кэка 70--75% и прочих постоянных величинах) в 2,5--2,8 раза. При увеличении влажности кэка с 75 до 85% производительность фильтра увеличивается в 1,5 раза. Так как параметры, входящие в уравнение (17>, взаимосвязаны, то при выборе их оптимальных значений следует исходить из свойств конкретного осадка, подлежащего обезвоживанию.

    Механическое обезвоживание производят на вакуум-фильтрах с разрежением до 50--80 кПа. Добавление к осадкам древесной муки, молотого мела, извести, каменноугольной пыли или флокулянтов позволяет получить кек с влажностью 60--80 %. Более экономичным, по мнению многих специалистов, является применение фильтр-прессов. При добавлении извести 10--50 % или флокулянтов совместно с летучей золой получают кеки с содержанием 45--50 % твердого. Для улучшения работы фильтр-прессов в качестве присадочных материалов можно использовать активный уголь, диатомит и др. При центрифугировании осадков содержание твердой фазы в них повышается до 10--15 %, а в случае применения реагентов -- до 25--30 %.

    Другими недостатками серийно выпускаемых вакуум-фильтров являются трудоемкость экипировки барабана фильтровальной тканью и то, что часть фильтрата, остающаяся в трубках секций при выходе из зоны вакуума и переходе в зону отдувки, выдувается сжатым воздухом, несколько разжижая образовавшийся кэк.

    Основными рабочими параметрами барабанных вакуум-фильтров являются продолжительность фильтроцикла и величина вакуума.

    При фильтровании на вращающемся барабанном вакуум-фильтре разность давлений создается вакуум-насосом. Фильтрующей средой на барабанном вакуум-фильтре является фильтровальная ткань и слой осадка, налипающий на ткань в процессе фильтрования. В начале цикла фильтрование происходит через ткань, в порах которой частички осадка задерживаются и создают добавочный фильтрующий слой. При продолжении фильтрования этот слой увеличивается и представляет собой главную часть фильтрующей среды, а назначение ткани сводится только к поддержанию фильтрующего слоя. Таким образом, при фильтровании происходят два процесса: протекание жидкости через пористую массу и образование пористой массы или слоя осадка (кэка).

    Метод механического обезвоживания осадка на вакуум-фильтрах непрерывного действия находит все более широкое применение для очистки как городских, так и промышленных сточных вод. Следует отметить, что I м фильтрующей поверхности в 2000 раз эффективнее Гм2 иловых площадок. Это означает, что вакуум-фильтр поверхностью 40 м2 может заменить 8 га иловых площадок. Таким образом, внедрение вакуум-фильтрации для обезвоживания осадка сточных вод - весьма актуальная задача.

    Определенный интерес представляет ленточный вакуум-фильтр, предназначенный для непрерывного фильтрования суспензии . Он позволяет получить продукт высокого качества в результате снижения содержания твердой фазы в осветленной жидкости, увеличить производительность фильтра и снизить энергозатраты на 10 - 15%.

    Схема действия ячейкового барабанного вакуум-фильтра

    Каких-либо обобщающих показателей производительности вакуум-фильтров при обезвоживании на них осадков производственных сточных вод нет. Оптимальную нагрузку на фильтры приходится принимать на основании предварительных экспериментальных данных и уточнять ее в процессе эксплуатации.

    Лучшим из механических способов является обезвоживание осадка на вакуум-фильтрах, при котором влажность понижается до 70--80%. Если необходимо получение меньшей влажности, то следует применять предварительное обезвоживание осадка на вакуум-фильтрах с последующей сушкой термическим путем.

    Основным критерием, характеризующим обезвоживание активного ила при вакуум-фильтрации, является его удельное сопротивление. Для обеспечения устойчивой работы вакуум-фильтра удельное сопротивление активного ила не должно превышать 10-1010--50-1010 см/г . Удельное сопротивление сырого активного ила сооружений биологической очистки сточных вод НПЗ изменяется в широких пределах: от 30-1010 до 380-1010 см/г, а сброженного ила колеблется в пределах 1210-1010--1430-1010 см/г, поэтому сброженный ил без добавления коагулянтов практически не обезвоживается.

    Из рис. 23 видно, что при 5 = 0,585 с увеличением давления производительность вакуум-фильтра по фильтрату увеличивается.

    Опыты, проведенные на станции аэрации г. Чикаго (США), показали, что производительность вакуум-фильтров увеличивается и срок службы ткани удлиняется при промывке ее через каждые 48 ч работы фильтра водой с добавлением тританол-алкиларилсульфоната (60%-ный детергент разводится в воде из расчета 1,7 кг на 1 м3 воды) и каустической соды. Промывка производится при вращении барабана фильтра в течение 4 ч Пери-одически фильтровальная ткань (дакрон) регенерируется 18%-ным раствором ингибированной соляной кислоты, разбрызгиваемым по ее поверхности при вращении барабана. При сильном заиливании фильтровальная ткань регенерируется 5%-ным раствором ингибированной соляной кислоты, для чего последний заливается в корыто фильтра, где вращается барабан в течение 15--18 ч. После регенерации ткань в течение 1 ч промывается водой. Показателем замены фильтровальной ткани является полное закупоривание ее поверхности более чем на 25%.

    Механическое обезвоживание осадков после тепловой обработки осуществляется преимущественно на фильтр-прессах; реже применяются барабанные вакуум-фильтры и еще реже -- центрифуги. Предпочтительнее применять фильтр-прессы. Они обеспечивают получение осадков с наиболее низкой влажностью -- до 45--50 %, что особенно важно при последующем сжигании осадков. Для обезвоживания на вакуум-фильтрах и в центрифугах температура обработки осадка в реакторе должна быть на 10--15 °С выше, чем при обезвоживании на фильтр-прессах. Влажность обезвоженных осадков можно принимать: для вакуум-фильтров -- 68-- 72 %, для фильтр-прессов -- 45-- 50 %, для центрифуг -- 73--78 %. Производительность обезвоживающих аппаратов устанавливается опытным путем. Для ориентировочных расчетов можно принять производительность: барабанных вакуум-фильтров -- 10-- 12 кг/(м2-ч), фильтр-прессов типа КМП (ФПАКМ) - 12-15 кг/(м2 ч).

    В отличие от фильтрационных процессов, которые работают периодически и при большой разнице давлений, вакуум-фильтры работают непрерывно при разнице давлений ниже 0,8 ат.

    По данным американских специалистов, ПАУ, выгружаемый из отстойников, после обезвоживания на центрифугах или вакуум-фильтрах может быть регенерирован термическим способом, в частности в печах с псевдоожиженным слоем многоподовых печах.

    Проектно-конструкторским бюро Академии коммунального хозяйства им. К. Д. Памфилова на основании испытания описанного вакуум-фильтра разработаны рабочие чертежи регенерационного узла---приставки к барабанному вакуум-фильтру БОУ5-1,75 поверхностью фильтрации 5 м2. Приставка состоит из трех роликов и желоба для промывной воды, по конструкции аналогичных описанному выше вакуум-фильтру. Для предотвращения провисания ткани при ее движении от поверхности барабана фильтра до отдувочно-разгрузочного ролика предусмотрена установка под тканью поддерживающего рольганга.

    Механическое обезвоживание осадка с дегельминтизацией (вариант IV). Механическое обезвоживание сырых осадков на барабанных вакуум-фильтрах целесообразно применять на станциях пропускной способностью свыше 30--50 тыс. м3/сут, а также при поступлении на станцию больших объемов производственных сточных вод . При этом необходимо предусматривать дегельминтизацию обезвоженных сырых осадков и активного ила бытовых -сточных вод .

    Для приготовления проб ила был отобран избыточный активный ил с очистных сооружений УОЛНПЗ. Ил подвергался обезвоживанию на вакуум-фильтре (максимальная степень обезвоживания - 88).

    Из возможных методов обезвоживания осадков сточных вод рациональным в настоящее время является обезвоживание на барабанных вакуум-фильтрах. При влажности шлама, подаваемого на обезвоживание, 70--60% производительность вакуум-фильтра по сухому веществу составляет Ю0--200 кг/(м2-ч).

    Если осадок, выделенный из нейтрализованной сточной воды в отстойниках, в дальнейшем подлежит механическому обезвоживанию на вакуум-фильтрах, фильтр - прессах или центрифугах, то его из отстойников перекачивают в осадкоуплотнители, рассчитываемые на продолжительность пребывания в них осадков не менее 6ч. Обезвоживание осадка на вакуум-фильтрах предусматривается при количестве сухого вещества в нем не менее 25кг/м3. В качестве фильтрующей ткани применяют капрон и бельтинг.

    На станции очистки сточных вод в г. Нью-Рошелл (штат Нью-Йорк) осадок, сброженный в двухступеиных метантенках, обезвоживается на вакуум-фильтрах поверхностью фильтрации 18,6 м2, промывка осадка не производится. Влажность обезвоживаемого осадка 88--92, щелочность 42 мэкв!л, pH = 6,9. При дозах коагулянтов хлорного железа 3% и извести 7,4% веса сухого вещества осадка производительность вакуум-фильтров составляет 30--40 кг/м2 * ч по сухому веществу, а влажность кэка 70--77,5%.

    Проведенные нами опыты показали, что оптимальной концентрацией активного ила, позволяющей получить максимальную производительность вакуум-фильтров при минимальных расходах коагулянтов, является концентрация 22--26 г/л для активного ила из вертикальных уплотнителей и 30--36 г/л для активного ила из радиальных илоуплотнителей.

    Бюрлингеймом на основании анализа работы трех очистных станций США, обслуживающих города с населением около 50 тыс. человек, сделан вывод, что обезвоживание на вакуум-фильтрах сырых осадков обходится дешевле, чем сбраживание их в метантенках и подсушка на иловых площадках.

    Содержащий 50% влаги радиоактивный шлам с удельной активностью до 1 кюри]л получается в результате химической обработки жидких отходов и отделения осадка на барабанном вакуум-фильтре с намывным слоем из диатомит. Дозировка и подача шлама в битуматор производится с помощью шестеренчатого насоса и мембранного дозатора. Для оптимизации процесса битумирования в аппарат подается раствор поверх-ностно-активных веществ одновременно с расплавленным битумом также с помощью дозирующих устройств. Битуматор длиной 6 м снабжен двумя шнеками, вращающимися со скоростью 180 об/мин. Винты шнеков имеют переменный шаг, что позволяет создать в битуматоре три зоны.

    Под оптимальной дозой понимается такой минимальный расход химических реагентов, который снижает удельное сопротивление осадка до величин, указанных в табл. 19, обеспечивая тем самым устойчивую работу вакуум-фильтров. При этом доза коагулянтов будет тем ниже, а производительность вакуум-фильтров тем выше, чем меньше была величина удельного сопротивления исходного осадка.

    Исследованиями, проведенными в НИИ КВОВ АКХ им. К. Д. Памфилова установлено, что для кондиционирования активного ила наиболее эффективным является катионный флокулянт типа ВА. Однако при обезвоживании осадка на вакуум-фильтре он обеспечивает снижение влажности до 85%. Для сравнения заметим, что при кондиционировании осадка хлорным железом и известью осадок, обезвоженный на вакуум-фильтре, имеет влажность 72--80 %.

    Осадки бытовых сточных вод, подлежащие механическому обезвоживанию, необходимо подвергать предварительной обработке. Метод механического обезвоживания осадка бытовых и производственных сточных (на вакуум-фильтрах, центрифугах и фильтр-прессах) необходимо выбирать с учетом физико-химических свойств осадка и местных условий. Перед обезвоживанием на вакуум-фильтрах сброженного осадка следует предусматривать промывку его очищенной сточной водой. Количество промывной воды для сброженного осадка из первичных отстойников 1,0-1,5 м3/м3,для сброженной в мезофильных условиях смеси осадка из первичных отстойников и избыточного активного ила 2-3 м3/м3, то же в термофильных условиях-3-4 м3/м3. Продолжительность промывки осадка 15-20 мин. При коагулировании осадков бытовых сточных вод в качестве реагентов применяют хлорное железо или сернокислое окисное железо и 10 -ный раствор извести. Известь добавляют в осадок после введения хлорного или сернокислого окисного железа. Количество реагентов в расчете на FeCi или Fe2(so4)3 и Сао принимают в процентах от массы сухого вещества осадка: для сброженного осадка первичных отстойников Peci - 3-4, CaO - 8-10, для сброженной смеси осадков первичных отстойников и избыточного активного ила FeCl - 4-6, CaO - 10-15, для сырого осадка первичных ОТСТОЙНИКОВ РеС13 - 2-3,5, СаО - 6-9, для смеси сырых осадков первичных отстойников и уплотненного избыточного активного ила: FeCi - 3-5, CaO - 9-13, для уплотненного избыточного ила из аэротенков на полную очистку Feci3 - 6-9, CaO - 17-25.Во всех случаях дозу Pe2(so4>3 увеличивают на 30-40% по сравнению с дозами хлорного железа.

    Не менее эффективным способом понижения удельного сопротивления осадков любого происхождения является их замораживание. Влажность такого осадка (после оттаивания и последующего отстаивания) значительно уменьшается. Производительность вакуум-фильтров при его обезвоживании увеличивается в 2--5 раз. Особенно эффективно вымораживание применительно к тонкодиспергированным осадкам, трудно отдающим влагу.

    Установлено , что избыточный активный ил уплотняется в илоуплотнителях до влажности 97,9-97,6% в течение суток, при дальнейшем хранении его влажность практически не снижается. Избыточный активный ил можно обезвоживать на серийно выпускаемых вакуум-фильтрах с обязательной обработкой коагулянтами. Использование вакуум-фильтрации для обезвоживания активного ила позволяет в 5-6 раз уменьшить его объем, но не решает проблему ликвидации образующегося осадка. Поэтому относительно простым и удобным путем ликвидации нефтешламов и активных илов является совместное их сжигание. Учитывая возможность использования продуктов сгорания, данное решение вопроса является рациональным для многих случаев.

    Влажность осадка после отстойников 98-99,5%. Для снижения влажности осадка рекомендуется дополнительное отстаивание в шламоуплотнлтепе в течение 3-5 суток. Осадок из шламоуплотнителя подается на узел обезвоживания (вакуум-фильтрация, фильтр-прессование, центрифугирование). Влажность осадка после вакуум-фильтра типа БОУ и БсхОУ составляет 80-85%, после центрифуги типа ОГШ - 72-79%, после фильтр-пресса типа ФПАКМ - 65-70%.

    Размещено на Allbest.ru

    ...

    Подобные документы

      Разработка блок-схемы алгоритма расчета на ЭВМ барабанного вакуум-фильтра производительностью 2850 кг/сут. сухого осадка. Виды нутч-фильтров. Дисковые и карусельные вакуум-фильтры. Применение фильтр-прессов для разделения суспензий. Блок-схема процесса.

      курсовая работа , добавлен 24.10.2012

      Изучение барабанных вакуум-фильтров с сходящим полотном и с наружной фильтрующей поверхностью. Рассмотрение схемы строения и режимов работы прибора. Расчет на прочность обечайки барабана, торцовой крышки и цапфы. Описание жидкостных и газовых фильтров.

      реферат , добавлен 07.09.2011

      Анализ оборудования для фильтрации. Описание, технологические и энергетические расчеты барабанного вакуум-фильтра. Особенности эксплуатации оборудования. Последовательность пуска и остановки. Недостатки конструкции: причины, меры по их устранению.

      курсовая работа , добавлен 12.04.2017

      Технологический расчет барабанного вакуум–фильтра фильтровальной установки. Выбор вспомогательного оборудования, емкостей. Расчет подогревателя исходной суспензии, диаметра и барометрической высоты труб. Оценка мощности, потребляемой вакуум–насосом.

      курсовая работа , добавлен 13.02.2014

      Краткая характеристика предприятия ЗАО "Сарапульская кондитерская фабрика". Технология приготовления сахарного сиропа. Конструкция и принципы работы вакуум-аппарата, охлаждающей, тянульной и дражировочной машин. Особенности работы вспомогательных цехов.

      отчет по практике , добавлен 01.10.2010

      Конструкція, області застосування випарних апаратів. Доставка, приймання, зберігання сировини. Виробництво томатного пюре періодичним способом. Інспекція і сортування томатів. Розрахунок барометричного конденсатора. Об’ємна продуктивність вакуум-насоса.

      курсовая работа , добавлен 27.11.2014

      Применение сетевых помехоподавляющих фильтров на производстве. Амплитудно-частотная характеристика фильтров. Виды индуктивностей или проходных конденсаторов. Специфика работы дросселей на высоких частотах. Подавление помех в цепях электропитания.

      курсовая работа , добавлен 27.04.2016

      Значение современной целлюлозно-бумажной промышленности для мирового хозяйства. Работа промывного цеха сульфатцеллюлозного завода с производительностью целлюлозы в 340 тонн за сутки. Основные расчеты и выбор вакуум-фильтров для промывки целлюлозы.

      курсовая работа , добавлен 09.05.2011

      Основы теории и сущность процессов выпаривания. Особенности процессов многократного выпаривания и применение термокомпрессоров в выпарных установках. Технологическая схема производства сгущенного молока. Расчет двухкорпусной вакуум-выпарной установки.

      курсовая работа , добавлен 24.12.2009

      Представление принципиальной схемы вакуум-выпарной установки, ее технологические характеристики. Расчет вспомогательного оборудования, барометрического конденсатора, теплообменного аппарата, штуцеров. Проверка на прочность и устойчивость аппаратов.